NOAA-ORNL Climate Research Collaboration Sets Lofty Goals for New Supercomputer

By Nicole Hemsoth

July 26, 2010

A year ago, NOAA and DOE signed an agreement calling for closer cooperation between NOAA and Oak Ridge National Laboratory. The agreement tasked ORNL with “providing research collaboration and technical support for high performance computing and data systems that will deliver improved climate data and model experiments.” Jim Rogers, director of operations for the National Center for Computational Sciences at ORNL, discusses the agreement and the goals for the Climate Modeling and Research System (CMRS), the initial supercomputer chosen for the collaborative work.

HPCwire: What are the scientific goals for CMRS? What kind of modeling resolution are you targeting? Will this allow you to add more components to the ensemble models?

Rogers: The high-level goal for this project is to develop better models for predicting climate variability and change. ORNL’s role is to provide NOAA with both the HPC resources and the collaborative support needed to extend and improve these models.

On NOAA’s current systems, the typical resolution of the coupled climate model has been limited to a grid increment of 200 km for the atmosphere, and 100 km for the ocean model because of limitations in computational resources. However, on the new Cray XE6, we expect that NOAA scientists will quickly transition to a much higher resolution 50 km atmosphere and 25 km ocean model. And while I expect that this will be the initial workhorse, NOAA is already working on a 25 km atmosphere and 10 km ocean model with better physics.

There are several things in play as we move to these higher resolution models. The first is identifying core-count sweet spots for the existing model, the second is improving the scalability of the current code so that it can effectively use larger numbers of cores, and the third is introducing a new version of the atmosphere that includes a more complete treatment of the upper-level atmospheric physics and dynamics.

HPCwire: Who are NOAA’s research partners in this endeavor?

Rogers: This agreement specifically includes collaboration among scientists within NOAA and DOE/ORNL. Jim Hack, Director of the National Center for Computational Sciences, is working with Brian Gross and Venkatramani Balaji of NOAA/GFDL to identify and scope these collaborative efforts.

HPCwire: Why did NOAA decide to use ORNL as a host site for CMRS?

Rogers: ORNL plays a leadership role for climate change science and is a well-established HPC resource provider, with the current fastest computer system in the world. NOAA has been using a significant number of processor hours at ORNL on both the Cray XT4 and XT5 since 2008. This existing relationship provides a strong basis for the more dedicated support that they will receive with the CMRS. This arrangement allows NOAA to leverage our unique strengths as the host site for the equipment, as well as collaborate on the science side in partnering two strong climate science communities.

HPCwire: As part of its energy research mission, ORNL has been active in climate research for a long time, but the lab has really stepped up its climate work in recent years, including recruiting top research talent in this field. What’s driving this escalation?

Rogers: ORNL has definitely increased its focus on climate modeling and research. Day to day, I see growth in this area through the Oak Ridge Climate Change Science Institute. There is a lot of momentum in this area, a lot of attention from the public, and significant opportunities for fostering collaborative work in earth systems modeling.

HPCwire: Is there a “critical mass” effect from having all this climate research talent and multiple petascale supercomputers in one place?

Rogers: There is clearly an advantage to this situation.

HPCwire: Do you expect the petascale CMRS system to attract even more climate research talent to the NOAA site at ORNL?

Rogers: The priorities for use of the CMRS system will be up to NOAA management, but it’s easy to imagine how the huge increase in capability will provide NOAA with the flexibility to do new things and more fully engage other components of the NOAA climate change program. The opportunity to work on state-of-the-art hardware will always be a draw, especially on this Cray XE6, which provides some very attractive features that even big brother “Jaguar” cannot provide, including denser, faster nodes and the higher-speed interconnect.

HPCwire: NOAA is providing ORNL with $215 million over five years for supporting the climate research work. This is federal stimulus money. How much do you expect this big funding infusion to accelerate progress in climate research?

Rogers: Only the first $73 million is ARRA [American Recovery and Reinvestment Act] money. That money has been budgeted for the acquisition, installation, operation, and support of the CMRS. Other funding sources up to the $215 million will round out many of the collaborative science projects and activities. The impact of this stimulus funding is pretty clear, though. In Year 1, the new CMRS provides a 5x increase in computational capability over NOAA’s current largest system. In the second year, the capacity quadruples to more than 1.1 petaflops. This is a huge resource, delivered in step with the scientific community’s needs.

HPCwire: How will the increased computational power and research funding affect America’s standing in the global climate research community? Will the US be taking on a bigger share of the work for IPCC [Intergovernmental Panel on Climate Change] or other collaborative projects?

Rogers: I certainly expect the CMRS systems to be used for IPCC AR5 [Fifth Assessment Report] work.

HPCwire: Is NOAA’s climate research work always collaborative, or do you sometimes compete with other large climate centers around the world?

Rogers: Climate science is by definition a highly collaborative enterprise. I imagine that this machine acquisition will put NOAA in a role to take on additional leadership roles in exploring questions about climate change.

HPCwire: This will bring the number of Cray petascale systems at ORNL to three. Why did you choose the Cray supercomputers for this work?

Rogers: This was the outcome of a competitive procurement that assessed a large number of factors, including technical solution and strategy, benchmarks, past performance, and total cost of ownership. Intense interest from the HPC vendors led to very good proposals. In the end, the Cray solution using the XE6 was the most competitive, demonstrating a very good fit for the high-resolution climate models, an aggressive installation and upgrade plan, and the greatest ability to deliver cycles to the NOAA climate community.

HPCwire: You’ll soon have the CMRS petascale system. What could you do with an exascale supercomputer?

Rogers: The climate modeling community has articulated plans to pursue higher-resolution models with much more realistic physics, with a goal of improving simulation fidelity. Exascale capabilities will be needed to achieve many of these challenging scientific goals. Of course, the modeling activities will need to be able to exploit a much more complex architecture to take advantage of an exascale computer, which will provide an equally challenging technical task for the climate community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This