NOAA-ORNL Climate Research Collaboration Sets Lofty Goals for New Supercomputer

By Nicole Hemsoth

July 26, 2010

A year ago, NOAA and DOE signed an agreement calling for closer cooperation between NOAA and Oak Ridge National Laboratory. The agreement tasked ORNL with “providing research collaboration and technical support for high performance computing and data systems that will deliver improved climate data and model experiments.” Jim Rogers, director of operations for the National Center for Computational Sciences at ORNL, discusses the agreement and the goals for the Climate Modeling and Research System (CMRS), the initial supercomputer chosen for the collaborative work.

HPCwire: What are the scientific goals for CMRS? What kind of modeling resolution are you targeting? Will this allow you to add more components to the ensemble models?

Rogers: The high-level goal for this project is to develop better models for predicting climate variability and change. ORNL’s role is to provide NOAA with both the HPC resources and the collaborative support needed to extend and improve these models.

On NOAA’s current systems, the typical resolution of the coupled climate model has been limited to a grid increment of 200 km for the atmosphere, and 100 km for the ocean model because of limitations in computational resources. However, on the new Cray XE6, we expect that NOAA scientists will quickly transition to a much higher resolution 50 km atmosphere and 25 km ocean model. And while I expect that this will be the initial workhorse, NOAA is already working on a 25 km atmosphere and 10 km ocean model with better physics.

There are several things in play as we move to these higher resolution models. The first is identifying core-count sweet spots for the existing model, the second is improving the scalability of the current code so that it can effectively use larger numbers of cores, and the third is introducing a new version of the atmosphere that includes a more complete treatment of the upper-level atmospheric physics and dynamics.

HPCwire: Who are NOAA’s research partners in this endeavor?

Rogers: This agreement specifically includes collaboration among scientists within NOAA and DOE/ORNL. Jim Hack, Director of the National Center for Computational Sciences, is working with Brian Gross and Venkatramani Balaji of NOAA/GFDL to identify and scope these collaborative efforts.

HPCwire: Why did NOAA decide to use ORNL as a host site for CMRS?

Rogers: ORNL plays a leadership role for climate change science and is a well-established HPC resource provider, with the current fastest computer system in the world. NOAA has been using a significant number of processor hours at ORNL on both the Cray XT4 and XT5 since 2008. This existing relationship provides a strong basis for the more dedicated support that they will receive with the CMRS. This arrangement allows NOAA to leverage our unique strengths as the host site for the equipment, as well as collaborate on the science side in partnering two strong climate science communities.

HPCwire: As part of its energy research mission, ORNL has been active in climate research for a long time, but the lab has really stepped up its climate work in recent years, including recruiting top research talent in this field. What’s driving this escalation?

Rogers: ORNL has definitely increased its focus on climate modeling and research. Day to day, I see growth in this area through the Oak Ridge Climate Change Science Institute. There is a lot of momentum in this area, a lot of attention from the public, and significant opportunities for fostering collaborative work in earth systems modeling.

HPCwire: Is there a “critical mass” effect from having all this climate research talent and multiple petascale supercomputers in one place?

Rogers: There is clearly an advantage to this situation.

HPCwire: Do you expect the petascale CMRS system to attract even more climate research talent to the NOAA site at ORNL?

Rogers: The priorities for use of the CMRS system will be up to NOAA management, but it’s easy to imagine how the huge increase in capability will provide NOAA with the flexibility to do new things and more fully engage other components of the NOAA climate change program. The opportunity to work on state-of-the-art hardware will always be a draw, especially on this Cray XE6, which provides some very attractive features that even big brother “Jaguar” cannot provide, including denser, faster nodes and the higher-speed interconnect.

HPCwire: NOAA is providing ORNL with $215 million over five years for supporting the climate research work. This is federal stimulus money. How much do you expect this big funding infusion to accelerate progress in climate research?

Rogers: Only the first $73 million is ARRA [American Recovery and Reinvestment Act] money. That money has been budgeted for the acquisition, installation, operation, and support of the CMRS. Other funding sources up to the $215 million will round out many of the collaborative science projects and activities. The impact of this stimulus funding is pretty clear, though. In Year 1, the new CMRS provides a 5x increase in computational capability over NOAA’s current largest system. In the second year, the capacity quadruples to more than 1.1 petaflops. This is a huge resource, delivered in step with the scientific community’s needs.

HPCwire: How will the increased computational power and research funding affect America’s standing in the global climate research community? Will the US be taking on a bigger share of the work for IPCC [Intergovernmental Panel on Climate Change] or other collaborative projects?

Rogers: I certainly expect the CMRS systems to be used for IPCC AR5 [Fifth Assessment Report] work.

HPCwire: Is NOAA’s climate research work always collaborative, or do you sometimes compete with other large climate centers around the world?

Rogers: Climate science is by definition a highly collaborative enterprise. I imagine that this machine acquisition will put NOAA in a role to take on additional leadership roles in exploring questions about climate change.

HPCwire: This will bring the number of Cray petascale systems at ORNL to three. Why did you choose the Cray supercomputers for this work?

Rogers: This was the outcome of a competitive procurement that assessed a large number of factors, including technical solution and strategy, benchmarks, past performance, and total cost of ownership. Intense interest from the HPC vendors led to very good proposals. In the end, the Cray solution using the XE6 was the most competitive, demonstrating a very good fit for the high-resolution climate models, an aggressive installation and upgrade plan, and the greatest ability to deliver cycles to the NOAA climate community.

HPCwire: You’ll soon have the CMRS petascale system. What could you do with an exascale supercomputer?

Rogers: The climate modeling community has articulated plans to pursue higher-resolution models with much more realistic physics, with a goal of improving simulation fidelity. Exascale capabilities will be needed to achieve many of these challenging scientific goals. Of course, the modeling activities will need to be able to exploit a much more complex architecture to take advantage of an exascale computer, which will provide an equally challenging technical task for the climate community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This