NVIDIA Serves Up Reality, GPU-Style

By Nicole Hemsoth

July 26, 2010

This morning, synchronized with the opening of the 37th Annual Siggraph International Conference, NVIDIA announced that it had partnered with PEER 1 to provide the industry’s first large-scale hosted GPU cloud. According to the announcement, the system will run the RealityServer 3D web application service platform to further enable animators, product designers, and others who rely on advanced 3D applications to propel their business or research forward without the need for an in-house CPU cluster.

Although this is not the first hosted GPU cloud in history, it is certainly the first of its kind in terms of scale. NVIDIA must have seen a growing market need to deliver its RealityServer platform enough to form the partnership to make it available to the masses–and this comes as big news to those who otherwise were barred from entry due to high upfront GPU cluster costs.

According to Sumit Gupta, Product Manager at NVIDIA’s Tesla GPU Computing (CUDA) Group, the market need for such a cloud was clear for a wide range of HPC application and uses. “There is widespread demand for hosted GPU clouds for markets such as financial services, 3D application rendering (with RealityServer and iray), scientific computing, and pharmaceutical and bioinformatics applications.”

Gupta notes that such a cloud is not a new concept for the company. He stated, “Similar GPU clusters have been built and used for quite some time. Several supercomputing centers and government labs have GPU clusters that researchers log into remotely in a similar fashion. In other words, the use of GPUs in such clouds is well understood and established.”

Prior to NVIDIA’s GPU-as-a-Service announcement, most of their scientific and industrial users were deploying their GPU applications on their own in-house GPU clusters. However ,with the ability to have on-demand access to comparable services, this not only lengthens the ability to reach new users, but provides the possibility for a new competitive landscape for business reliant on GPU clusters for their core operations. 

Gupta stated that in addition to these possibilities, customers have the capability to test scaling of their application on a large GPU system before they invest in their own and possibly avoid buying their own if the investment looks unsteady. Furthermore, those who do already have an in-house GPU cluster can offload peak demand to the cloud instead of waiting or postponing workloads.

So, what would users be sacrificing if they chose to run their GPU applications in the cloud versus on site? According to NVIDIA’s Gupta, “there are no performance limitations for compute-intensive applications. For graphics-intensive applications, this cloud is useful for remote rendering, but not for interactive graphics rendering.”

While this still extends the reach of the NVIDIA RealityServer platform, these limitations do not generally touch the target audience for this announcement. When asked who this cloud news is aimed at, Gupta replied that their GPU cloud “has been primarily built for customers who use the compute capability of GPUs. NVIDIA’s GPUs are based on the massively parallel CUDA architecture, which enables the GPU to be used both for graphics and general purpose computing. NVIDIA’s GPU is programmable using C, C++, and Fortran as well as driver APIs like OpenCL, DirectCompute, and OpenGL.”

Larger Servings of Reality for More Users

The RealityServer platform for cloud computing, which is in effect a combination of GPUs and software that sends highly realistic 3D applications across the web was announced in October, 2009. It allowed for the development of more complex 3D web-based applications and opened the door to opportunity for developers and enterprises alike due to the extended capabilities that went beyond other 3D application development and deployment options.

For instance, the RealityServer software utilizes iray technology, which is “the world’s first physically correct ray-tracing renderer that employs the massively parallel CUDA architecture of NVIDIA’s GPUs to create stunningly accurate photorealistic images by simulating the physics of light in its interaction with matter. Because ray tracing is one of the most demanding computational problems, iray technology is designed to take advantage of the parallel computing power of NVIDIA Tesla.

In the announcement last year for the RealityServer, Fernando Toledo from the Virtual Reality Center at the National Institute for Aviation Research at Witchita State University discussed how the biggest problems prior to the RealityServer involved “managing and visualizing massive datasets while keeping that data secure…using RealityServer for virtual prototyping, design reviews and remote visualization solves those issues.” While this is, of course, a glowing review of the product since it appeared in the release of the news in 2009, it does represent the scope of possibilities on an individual research area level for researchers in distinct areas. Making this available without a significant investment in hardware is where the beauty of this announcement lies.

Just as it is the story of cloud and SaaS models in general, especially as we move forward with progress on the security and privacy fronts, the bigger piece of news in this announcement brings is that it is increasingly possible for smaller companies to get off the ground without significant upfront investment. Using operating expenses to leverage a large-scale GPU cloud will leave companies more available to concentrate on product and business development rather than deal with the expense and maintenance of a GPU cluster.

The related story outside of this is seeing how an increase in accessibility will bring greater development of 3D applications in general. Is it possible that there is a generation of developers waiting for the chance to jump into RealityServer who have been unable to in the past due to high barriers of entry? If this plays out, there could be a host of new 3D applications flooding the market, which will create a win-win situation both for the developers, the users, and of course, NVIDIA and its hosting partner PEER1.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This