GPGPU Computing Demand Spurs Cloud Offering

By Michael Feldman

July 27, 2010

The world’s largest public GPGPU computing on-demand service was launched this week at the SIGGRAPH International Conference in Los Angeles. PEER 1 Hosting, a provider of IT infrastructure, has constructed a 128-GPU compute cloud that incorporates NVIDIA Tesla gear and mental image’s RealityServer 3D Web platform. The new service is aimed at customers who want to offload image rendering and technical computing workloads on GPU-accelerated servers.

Although the GPU cloud can serve scientific apps, the SIGGRAPH announcement was timed to entice customers looking to host visualization work. In this case, the provided RealityServer software is used in an SaaS (Software-as-a-Service) fashion to distribute image processing-type work across the cloud. This can entail applications such as CG rendering, medical or seismic imaging, and product design. Since RealityServer also ties into Internet protocols such as HTML and PHP, this gives Web applications a path to GPU-accelerated services. On the other hand, for HPC-type technical computing, the RealityServer layer can be bypassed entirely. In this way, the cloud is delivered as a straight IaaS (Infrastructure-as-a-Service) platform. Bioinformatics, financial analytics, and a wide range of scientific research applications that benefit from GPU acceleration are all fair game.

PEER 1’s GPU setup is housed at two locations — London, England, and Toronto, Canada — but can be accessed from anywhere in the world. Hardware-wise, the cloud is made up of S1070 Tesla servers and M2050-equipped x86 servers, in approximately a 50:50 ratio. The S1070 is a 4-GPU server that uses the older 10-series Tesla hardware and is paired with a traditional CPU server to funnel work to it. The M2050 is the Fermi-class 20-series Tesla module that is integrated into an x86 server and talks directly to the CPU within the same box.

According to Robert Miggins, PEER 1’s senior vice president of business development, the pricing model is based on dedicated service rather than renting GPU-hours in a virtual environment. The nominal rate for the S1070 infrastructure is about $500 per GPU/month, which works out to about $0.70 per GPU-hour. The new Fermi M2050-equipped servers are being offered at $800 to $900 per GPU/month ($1.18 per GPU-hour). Miggins says the pricing is going to vary somewhat, depending on the CPUs, main memory capacity, and disks that are paired with the GPUs. Leasing GPUs with an annual contract will cost less than the monthly rate, but renting them on an hourly or daily basis is likely to cost more. In addition, if the customer opts for the RealityServer platform, that licensing cost is tacked on top of the GPU pricing, but in most cases only adds about 10 percent to the total bill.

Problem size ultimately dictates how many GPUs an application can take advantage of, but beyond that, most GPU computing software is not currently optimized to use more than a handful of graphics devices. For the PEER 1 cloud, most users are looking to grab 4 to 8 GPUs at a time, although they’ve seen some interest for 16, 32, and even 64 GPUs. Scaling apps to hundreds of GPUs is still mostly in the research arena.

Miggins says interest in using the 10-series S1070 GPU servers tends to come more from the traditional graphics side, while the Fermi GPU-equipped gear is more apt to appeal to technical computing customers, such as insurance firms, banks, bioinformatics providers, and oil & gas companies. User preferences are going to be driven mainly by PEER 1’s pricing model, which puts a cost premium on the more capable 20-series Fermi hardware. Since visualization apps, such as image rendering, don’t require Fermi goodies like ECC memory and double-precision performance, users with this type of work might as well go with the less expensive 10-series Teslas.

PEER 1’s 128-GPU cloud may be the biggest one out there, but it’s not the first. SGI’s Cyclone offers a GPU acceleration option, as does Penguin’s on-demand service. Application-specific GPU clouds are starting to appear as well, including the AMD Fusion Render Cloud from Supermicro and OTOY, announced in March. This one is built with the latest ATI GPU and Opteron CPU hardware, and, as its name implies, is intended to deliver HD games and video streams to Web devices, as well as serve as a platform for real-time image rendering. Private GPU clouds based on NVIDIA GPUs (and RealityServer) are even more numerous. These include mydeco.com (3D visualization for virtual furniture shopping), scenecaster.com (building 3D Facebook content), and luminova.net (professional design collaboration), among others.

All of which seems to point to a growing market for GPU computing on-demand. Even prior to the official rollout of the PEER 1 GPU cloud, the hosting provider was receiving a lot of inquires from potential customers. These included users looking to host RealityServer-driven apps as well as more traditional GPU computing work. At this point, Miggins estimates that about two-thirds of the demand is coming from users interested in GPU computing on the bare infrastructure. He says they have already signed up a couple of paying customers and have two other trial customers taking the GPUs for a spin.

From PEER 1’s perspective, the need for managed GPU hosting is clearly there, and they expect to expand capacity accordingly as customer demand ramps up. Besides their partnership with NVIDIA, which is shuttling prospective customers to PEER 1, the company is hoping the official launch at SIGGRAPH will net additional business. With so few players offering GPU computing on-demand, PEER 1 may not have to work very hard locating new customers. “I’m more worried about our ability to keep up with the demand than I am about locating where the demand is,” says Miggins.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This