Postcards From the Edge of Parallel Computing

By Michael Feldman

July 30, 2010

As you may have noticed, workshops, conferences, and summits on multicore and parallelism seem to be all the rage these days. A recent example is USENIX’s second annual workshop on Hot Topics in Parallelism (HotPar ’10), which took place on June 14-15 in Berkeley, California. It featured a mix of speakers from academia and industry, with perhaps a bit of a slant toward the former. The usual suspect organizations from the parallel computing universe showed up, including UC Berkeley, Intel, MIT, Stanford University, University of Illinois, Microsoft, NVIDIA, and a handful of others.

The presentations, which delved into everything from parallelizing Firefox and multicore schedulers, to the limits of GPGPU acceleration, have been conveniently posted on the workshop’s website. But if you want the Cliff Notes version, Real World Technologies covered the event, and Tarek Chammah has penned a well-constructed article highlighting some of the more interesting HotPar talks.

He also wrapped some context about the nature of parallel programming around the HotPar report. In particular, Chammah reminds us that there are different dimensions to parallelism, namely granularity, regularity, and data sharing patterns; and they are manifested in different forms. Although Chammah covers a few presentations that are a bit esoteric, such as the one on shared states in video games, the whole article is worth a read. That said, I’d like to point to two HotPar presentations that I think everyone should take a look at — and which are also covered the Real World Technologies piece.

The first is based on a paper (PDF) by Georgia Tech’s Richard Vuduc exploring the limits of GPU acceleration. Actually, I covered this topic a few weeks ago in a previous blog, so I won’t rehash it here. Suffice to say that the performance claims for GPUs and CPUs must be approached with a healthy level of skepticism. The non-controversial conclusion is that some applications are going to be better suited to one architecture or another. The unfortunate aspect to this is that one may have to do a lot of code tweaking and testing to find out which one is optimal.

The second presentation worth perusing takes a look at the parallelism “problem” from the 50,000 foot-level, specifically from the perspective of cloud computing. Karu Sankaralingam of the University of Wisconsin-Madison says that everyone needn’t get so worked up about this parallel computing thing, since it’s not the problem people think it is. In his paper, Get the Parallelism out of My Cloud (PDF), Sankaralingam argues that the nature of cloud computing, which seems poised to become the dominant computing paradigm, does not necessitate traditional rocket-science parallelism. Rather it needs concurrency (tasks running at the same time, but unrelated to one another), which is a far easier proposition, software-wise, and can be managed by a small number of software gurus that actually need to program at the level of multicore processors.

Of course, for HPC-types this is not the case. In supercomputers, true parallelism is the norm and it is pervasive. Unfortunately for Sankaralingam, he gave his cloud-parallelism soliloquy in the presence of such people, who took exception to this “Parallelism: What Me Worry” approach. From Chammah’s coverage:

…The iconoclastic talk understandably caused a minor ruckus in the room. There were no less than seven questioners lined up to challenge or pillory the speaker, who took it all in stride. It was mentioned by others that though chip throughput performance follows Moore’s Law, latency does not. Dr. [David] Patterson noted that current devices already feature multiple cores, and he bet Karu that a future iPhone will sport 8-10 application programmable cores in a few years with developers taking advantage of their data parallelism in Objective C.

Sankaralingam’s point is not without merit, though. Even in the rarified air of high performance computing, high-level languages like C and Fortran are used for most codes, with parallelism superimposed via calls to MPI and numerical libraries. Nobody programs in assembly anymore. And although the average HPC developer needs to know quite a bit more about parallel programming than the average code-slinger, more of the low-level details are probably going to end up being encapsulated in software frameworks, like Ct, Chapel, MATLAB, and so on.

Until then, the parallel programming challenge will continue to be one of the hottest topics in computer science, as well as the industry. My guess is that we will likely see a lot more HotPar workshops before this becomes a solved problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This