Postcards From the Edge of Parallel Computing

By Michael Feldman

July 30, 2010

As you may have noticed, workshops, conferences, and summits on multicore and parallelism seem to be all the rage these days. A recent example is USENIX’s second annual workshop on Hot Topics in Parallelism (HotPar ’10), which took place on June 14-15 in Berkeley, California. It featured a mix of speakers from academia and industry, with perhaps a bit of a slant toward the former. The usual suspect organizations from the parallel computing universe showed up, including UC Berkeley, Intel, MIT, Stanford University, University of Illinois, Microsoft, NVIDIA, and a handful of others.

The presentations, which delved into everything from parallelizing Firefox and multicore schedulers, to the limits of GPGPU acceleration, have been conveniently posted on the workshop’s website. But if you want the Cliff Notes version, Real World Technologies covered the event, and Tarek Chammah has penned a well-constructed article highlighting some of the more interesting HotPar talks.

He also wrapped some context about the nature of parallel programming around the HotPar report. In particular, Chammah reminds us that there are different dimensions to parallelism, namely granularity, regularity, and data sharing patterns; and they are manifested in different forms. Although Chammah covers a few presentations that are a bit esoteric, such as the one on shared states in video games, the whole article is worth a read. That said, I’d like to point to two HotPar presentations that I think everyone should take a look at — and which are also covered the Real World Technologies piece.

The first is based on a paper (PDF) by Georgia Tech’s Richard Vuduc exploring the limits of GPU acceleration. Actually, I covered this topic a few weeks ago in a previous blog, so I won’t rehash it here. Suffice to say that the performance claims for GPUs and CPUs must be approached with a healthy level of skepticism. The non-controversial conclusion is that some applications are going to be better suited to one architecture or another. The unfortunate aspect to this is that one may have to do a lot of code tweaking and testing to find out which one is optimal.

The second presentation worth perusing takes a look at the parallelism “problem” from the 50,000 foot-level, specifically from the perspective of cloud computing. Karu Sankaralingam of the University of Wisconsin-Madison says that everyone needn’t get so worked up about this parallel computing thing, since it’s not the problem people think it is. In his paper, Get the Parallelism out of My Cloud (PDF), Sankaralingam argues that the nature of cloud computing, which seems poised to become the dominant computing paradigm, does not necessitate traditional rocket-science parallelism. Rather it needs concurrency (tasks running at the same time, but unrelated to one another), which is a far easier proposition, software-wise, and can be managed by a small number of software gurus that actually need to program at the level of multicore processors.

Of course, for HPC-types this is not the case. In supercomputers, true parallelism is the norm and it is pervasive. Unfortunately for Sankaralingam, he gave his cloud-parallelism soliloquy in the presence of such people, who took exception to this “Parallelism: What Me Worry” approach. From Chammah’s coverage:

…The iconoclastic talk understandably caused a minor ruckus in the room. There were no less than seven questioners lined up to challenge or pillory the speaker, who took it all in stride. It was mentioned by others that though chip throughput performance follows Moore’s Law, latency does not. Dr. [David] Patterson noted that current devices already feature multiple cores, and he bet Karu that a future iPhone will sport 8-10 application programmable cores in a few years with developers taking advantage of their data parallelism in Objective C.

Sankaralingam’s point is not without merit, though. Even in the rarified air of high performance computing, high-level languages like C and Fortran are used for most codes, with parallelism superimposed via calls to MPI and numerical libraries. Nobody programs in assembly anymore. And although the average HPC developer needs to know quite a bit more about parallel programming than the average code-slinger, more of the low-level details are probably going to end up being encapsulated in software frameworks, like Ct, Chapel, MATLAB, and so on.

Until then, the parallel programming challenge will continue to be one of the hottest topics in computer science, as well as the industry. My guess is that we will likely see a lot more HotPar workshops before this becomes a solved problem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This