Revolution Analytics Lifts R Language into Terascale Computing

By Michael Feldman

August 4, 2010

R language booster Revolution Analytics is going after the predictive analytics crowd with its latest Revolution R Enterprise software platform. The company announced this week it will be introducing a package called RevoScaleR to bring the R language into the world of “Big Data,” enabling analytics applications to turbo-charge their performance and scale terabyte-sized mountains of data.

Analytics has increasingly become a way for companies to automate intelligence. Businesses in quantitative finance, life sciences, telecom, manufacturing and retail are all looking to mine their data for profits. Governments are also generating enormous amounts of data, and are looking for ways to make sense of it all. Organizations traditionally looked to SAS and SPSS (now a part of IBM) to provide high-end analytics, but a new ecosystem is growing up around the open-source R language, a framework used for statistical computing and modeling.

Developed in the 1990s by Ross Ihaka and Robert Gentleman in New Zealand, the R language was purpose-built for the needs of statisticians. As such, it is tailor-made for analytics and has become the most popular programming language for such work in academia and, increasingly, in the commercial realm. “It’s really has become the lingua franca of learning statistics at universities,” says Jeff Erhardt, COO at Revolution Analytics.

Because of its open-source nature, R is attracting a lot of innovation from its user community. Erhardt says there are probably close to 2 million users worldwide today, and that number is growing. His company hopes to turn that grassroots popularity into a thriving business by propelling the language into the enterprise.

To accomplish that will require some work. R has two fundamental limitations. First, the language is memory bound. That is, it expects the entire database to be in RAM. For the typical workstation, that becomes a problem for any dataset over a few gigabytes. Second is performance. R executes a single process, so cannot take advantage of the performance inherent in multicore/multithreaded CPUs and cluster architectures. According to Revolution Analytics CTO David Champagne, to make it into the enterprise, both issues have to be addressed. And that’s what Revolution R Enterprise and the new RevoScaleR package aim to do.

Speed is really the big issue here, given that the results of predictive analytics are time-sensitive to one degree or another. For example, a trading desk in the US needs to be ready to execute the optimal trades and arbitrage opportunities when the markets in Tokyo open in the morning. To do that, the trading institution has to be able to churn through its entire portfolio overnight.

Overcoming the memory limitation has been accomplished with what the company calls its “external memory” framework. Essentially, it allows data to be quickly brought into memory in bite-sized chunks so that even terabyte-sized data files with billions of rows can be accommodated. To support this model, Revolution Analytics invented the XDF file format in which data rows and columns can be read and written in arbitrary blocks. In fact, new columns and rows can even be inserted on the fly without having to rewrite the rest of the file. This speeds up data transformations considerably, according to Champagne, and makes the analytics workflow much more efficient.

A lot of the execution speed is the result of good old-fashioned parallelism. The initial RevoScaleR implementation enables R applications to be parallelized across multiple cores (and CPUs) on a laptop, workstation or server. With a dual-socket Intel Xeon 5600 (Westmere) server, that means computation can be distributed across as many as 12 cores. Support for distributing an app across multiple nodes in a datacenter will follow shortly. RevoScaleR provides an interface for a number of common statistical algorithms including linear regression, cross tabulation, logistic regression, and summary statistics, with more on the way.

The company has demonstrated considerable speedups using the RevoScaleR package. On an 8-core Nehalem server, with 8 GB of RAM, they were able to process a 13 GB file in record time. In this case the file contained US airline flight data from 1987 to 2008 and was made up of 123 million rows and 29 columns. They were able to execute a linear regression on two variables (arrival delay and day of the week) in about 1 second. The next best implementation (using a special R package to deal with big data files) took around six minutes.

Specific comparisons against traditional SAS and SPSS implementations are lacking, but according to Champagne, beta customers using RevoScaleR have reported orders of magnitude performance speedup compared to legacy analytics platforms. And although Erhardt claims they are not specifically going after SAS and SPSS accounts, customers looking for a less proprietary solution might be tempted by the Revolution offering. “Clearly they come to us, in particular, when they are looking for cost advantage,” he says.

The company basically has two tiers of pricing for commercial customers (Revolution R Enterprise is free to academic users). For the individual user on a desktop, they’re going to charge in “the low thousands of dollars.” The second tier is for multiple users in a more typical enterprise server-based setup. Depending on the configuration, prices should be in the low-five figure range, with a site license in the six-figure range. According to Erhardt, the goal is to leverage the open-source R software and offer their enterprise product at a fraction of the price of traditional analytics software platforms.

The initial RevoScaleR package will be available in 30 days, but only with multicore/multiprocessor support, and only on Windows. Support for distributed computing across a cluster and on Linux is slated for sometime in the next quarter. Also in the queue is support for C++ users who want to add their home-grown algorithms that take advantage of RevoScaleR’s external memory model. And last on the docket is a Web services product that will make R applications accessible from a browser or some other client interface. For a more detailed look at what’s in store, check out the company’s white paper of its roadmap.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This