Revolution Analytics Lifts R Language into Terascale Computing

By Michael Feldman

August 4, 2010

R language booster Revolution Analytics is going after the predictive analytics crowd with its latest Revolution R Enterprise software platform. The company announced this week it will be introducing a package called RevoScaleR to bring the R language into the world of “Big Data,” enabling analytics applications to turbo-charge their performance and scale terabyte-sized mountains of data.

Analytics has increasingly become a way for companies to automate intelligence. Businesses in quantitative finance, life sciences, telecom, manufacturing and retail are all looking to mine their data for profits. Governments are also generating enormous amounts of data, and are looking for ways to make sense of it all. Organizations traditionally looked to SAS and SPSS (now a part of IBM) to provide high-end analytics, but a new ecosystem is growing up around the open-source R language, a framework used for statistical computing and modeling.

Developed in the 1990s by Ross Ihaka and Robert Gentleman in New Zealand, the R language was purpose-built for the needs of statisticians. As such, it is tailor-made for analytics and has become the most popular programming language for such work in academia and, increasingly, in the commercial realm. “It’s really has become the lingua franca of learning statistics at universities,” says Jeff Erhardt, COO at Revolution Analytics.

Because of its open-source nature, R is attracting a lot of innovation from its user community. Erhardt says there are probably close to 2 million users worldwide today, and that number is growing. His company hopes to turn that grassroots popularity into a thriving business by propelling the language into the enterprise.

To accomplish that will require some work. R has two fundamental limitations. First, the language is memory bound. That is, it expects the entire database to be in RAM. For the typical workstation, that becomes a problem for any dataset over a few gigabytes. Second is performance. R executes a single process, so cannot take advantage of the performance inherent in multicore/multithreaded CPUs and cluster architectures. According to Revolution Analytics CTO David Champagne, to make it into the enterprise, both issues have to be addressed. And that’s what Revolution R Enterprise and the new RevoScaleR package aim to do.

Speed is really the big issue here, given that the results of predictive analytics are time-sensitive to one degree or another. For example, a trading desk in the US needs to be ready to execute the optimal trades and arbitrage opportunities when the markets in Tokyo open in the morning. To do that, the trading institution has to be able to churn through its entire portfolio overnight.

Overcoming the memory limitation has been accomplished with what the company calls its “external memory” framework. Essentially, it allows data to be quickly brought into memory in bite-sized chunks so that even terabyte-sized data files with billions of rows can be accommodated. To support this model, Revolution Analytics invented the XDF file format in which data rows and columns can be read and written in arbitrary blocks. In fact, new columns and rows can even be inserted on the fly without having to rewrite the rest of the file. This speeds up data transformations considerably, according to Champagne, and makes the analytics workflow much more efficient.

A lot of the execution speed is the result of good old-fashioned parallelism. The initial RevoScaleR implementation enables R applications to be parallelized across multiple cores (and CPUs) on a laptop, workstation or server. With a dual-socket Intel Xeon 5600 (Westmere) server, that means computation can be distributed across as many as 12 cores. Support for distributing an app across multiple nodes in a datacenter will follow shortly. RevoScaleR provides an interface for a number of common statistical algorithms including linear regression, cross tabulation, logistic regression, and summary statistics, with more on the way.

The company has demonstrated considerable speedups using the RevoScaleR package. On an 8-core Nehalem server, with 8 GB of RAM, they were able to process a 13 GB file in record time. In this case the file contained US airline flight data from 1987 to 2008 and was made up of 123 million rows and 29 columns. They were able to execute a linear regression on two variables (arrival delay and day of the week) in about 1 second. The next best implementation (using a special R package to deal with big data files) took around six minutes.

Specific comparisons against traditional SAS and SPSS implementations are lacking, but according to Champagne, beta customers using RevoScaleR have reported orders of magnitude performance speedup compared to legacy analytics platforms. And although Erhardt claims they are not specifically going after SAS and SPSS accounts, customers looking for a less proprietary solution might be tempted by the Revolution offering. “Clearly they come to us, in particular, when they are looking for cost advantage,” he says.

The company basically has two tiers of pricing for commercial customers (Revolution R Enterprise is free to academic users). For the individual user on a desktop, they’re going to charge in “the low thousands of dollars.” The second tier is for multiple users in a more typical enterprise server-based setup. Depending on the configuration, prices should be in the low-five figure range, with a site license in the six-figure range. According to Erhardt, the goal is to leverage the open-source R software and offer their enterprise product at a fraction of the price of traditional analytics software platforms.

The initial RevoScaleR package will be available in 30 days, but only with multicore/multiprocessor support, and only on Windows. Support for distributed computing across a cluster and on Linux is slated for sometime in the next quarter. Also in the queue is support for C++ users who want to add their home-grown algorithms that take advantage of RevoScaleR’s external memory model. And last on the docket is a Web services product that will make R applications accessible from a browser or some other client interface. For a more detailed look at what’s in store, check out the company’s white paper of its roadmap.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This