Scaling the New Bar for Latency in Financial Networks

By Brian Quigley

August 9, 2010

The bar for what qualifies as a fast connection or “low latency” networking has always been higher in finance than in other areas of corporate networking. It’s never been quite this high, however.

The increased use of innovative algorithmic-trading strategies has levied unprecedented pressure on financial firms to seek out and remove any possible delays that could threaten the successful execution of automated buy and sell orders. Significant time and resources are spent to achieve even modest, incremental improvements in latency at every point in the ecosystem of processes and systems that undergird algorithmic trading.

Managers of financial networks have found that the process of transporting data from one building to another is a common source of those delays. The fiber optic links between stock exchanges, alternative trading systems, colocation providers and information feeds all introduce additional latency into the system. Once, those amounts were deemed negligible — even in financial networking. Today, they are simply unacceptable.

Contemporary Trading’s Latency Intolerance

High-frequency trading (HFT) and other forms of algorithmic trading have emerged since the late 1990s. In all of them, a computer model has a predefined set of rules that automates the process of buying and selling. The computer receives various inputs from throughout the world (market data on price and volume, labor statistics, employment information, for example). The data is parsed and monitored in real time, and automated buy/sell decisions are executed according to how the model interprets the incoming intelligence.

Since the first trade to the market gets the best price, the delivery of a buy or sell order must be as fast as possible. Just a little more than a year ago, firms were concentrating on removing milliseconds from their network; today, a mere 250 nanoseconds make a difference.

The solution is not a matter of contacting the local phone company and deploying its most current high-bandwidth connection to the buildings that house an exchange. Even adopting the leading-edge, highest-speed model of router or multicore processor computer blades might not successfully address the financial world’s hypersensitivity to latency.

Traditionally, a firm has sought to improve its algorithimic trading processes by focusing first on the computer model itself. A lot of mathematicians have invested a lot of hours into tweaking the models that predict how the world is going to behave. Next, firms have sought to boost efficiency by optimizing the servers that process information against models, as well as the switches connecting those servers. More and more frequently, firms often locate or colocate clusters of computers in the financial exchanges themselves to root out proximity delays. Today, a firm’s various building-to-building transport connections are attracting attention from IT staffs.

It’s an entire ecosystem that must be optimized to wring as much latency as possible from algorithmic trading, and many financial firms now seek to take greater control over all of it.

From Buy to Build

Historically, when a financial firm required a connection between two buildings, it procured service from a phone company by ordering a circuit at a monthly fee, and the system would run through the phone company’s network, which typically would have some routing functionality for linking the two locations. Two key things have changed in the last few years.

One, algorithmic trading has crystallized scrutiny on the latency created every time traffic must pass through a router or take an indirect path to a central office. (It’s easy enough to quantify the sum of these delays; any member of the IT staff can look up the impact on the router.) Two, a combination of advances in optical technology that are specifically designed to eliminate latency, plus the lower costs and expanded availability of dark fiber, have enhanced a financial firm’s business case for building a dedicated infrastructure.

The performance gains are in the orders of magnitude — from 120 microseconds of latency for a carrier-provided service between buildings to 40 microseconds in a privately operated, optimized infrastructure. Service reliability can be enhanced with 24-by-7 monitoring predicated on the knowledge that 30 minutes of downtime to a financial firm can mean millions of dollars in lost revenue. The firm becomes more flexible to react and scale for new opportunities, as circuits can be turned up as needed. And it gains a path to continued innovation when partnering with vendors who understand the firm’s low-latency requirements and are under the gun to roll out enhancements to continually shave delays.

These developments have financial network managers asking, “Who can I partner with to sell me dark fiber, and what is the path that the fiber will take?” The ramifications of the answers are far-reaching. Financial firms must ensure that they are not sinking their money in a dark fiber route that snakes jaggedly under roads and up and down manholes, given the fact that eight inches of fiber can translate into a nanosecond of delay.

The next question is, “What is the latency of that path?” That answer demands an understanding of how optical transport works.

Getting into the Glass

There are four common optical networking functions where managers of financial networks often can realize game-changing efficiencies in latency budgets. When traffic beams across glass fiber, it encounters equipment that performs amplification, color conversion, dispersion compensation and regeneration. Each of these Wavelength Division Multiplexing (WDM) functions can be absolutely necessary to successfully carry out transport depending on the specific network environment, but each certainly also will inject some delay into the process. How much delay is something that financial managers must quantify and control if they are to squeeze every drop of latency from their end-to-end infrastructures.

  • Amplification — Optical networks frequently rely on Erbium Doped Fiber Amplifiers (EDFAs) to boost a traffic signal and offset the weakening that occurs across an optical span. Latency in the microseconds is the not-uncommon impact of the conventionally, widely deployed EDFA architectures. Consequently, financial networks supporting algorithmic trading must instead utilize emergent amplifiers optimized to yield lower latency.
     
  • Color conversion — In WDM optical networking, traffic is “transponded” — or, converted to a color of light — for delivery of a signal across a pair of glass fiber. Similarly, multiple colors of light are aggregated across a single fiber; multiple 10 Gbit/s services, for example, are “muxponded” into a single pair of fibers. Again, a financial network’s transponding and muxponding functions must be optimized for low-latency transport because conventional techniques such as Optical Channel Data Unit (ODU) encapsulation and thin film filters introduce too much delay.
     
  • Dispersion compensation — One of the ways that a traffic signal can degrade over the span of an optical link is “chromatic dispersion.” This is a phenomenon in which a signal effectively smears into a spectrum of hues, and it’s particularly common for data travelling at high speed. Installing kilometers of dispersion compensating fiber (DCF) has provided a remedy in some optical networks, but it’s not a wise approach in infrastructures supporting algorithmic trading. Latencies are too great. Optimized methods, like Fiber Bragg gratings, offer a low-latency alternative for counteracting chromatic dispersion.
     
  • Regeneration — Another method for preventing signal degradation over the course of a glass fiber connection is regeneration. Low-latency approaches to the function can help managers of financial networks claim significant efficiencies, because commonly deployed methods of regeneration produce considerable delay.

Conclusion

Contemporary finance is a race between markets. Firms are concerned with nanoseconds of latency in the processes and the systems that underlie algorithmic trading. Shaving eight inches of fiber equates to a one-nanosecond lead. Every element in a firm’s strategy is being evaluated for improvements, and optical fiber transport is targeted as a prime area for optimization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment group International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment group International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This