Scaling the New Bar for Latency in Financial Networks

By Brian Quigley

August 9, 2010

The bar for what qualifies as a fast connection or “low latency” networking has always been higher in finance than in other areas of corporate networking. It’s never been quite this high, however.

The increased use of innovative algorithmic-trading strategies has levied unprecedented pressure on financial firms to seek out and remove any possible delays that could threaten the successful execution of automated buy and sell orders. Significant time and resources are spent to achieve even modest, incremental improvements in latency at every point in the ecosystem of processes and systems that undergird algorithmic trading.

Managers of financial networks have found that the process of transporting data from one building to another is a common source of those delays. The fiber optic links between stock exchanges, alternative trading systems, colocation providers and information feeds all introduce additional latency into the system. Once, those amounts were deemed negligible — even in financial networking. Today, they are simply unacceptable.

Contemporary Trading’s Latency Intolerance

High-frequency trading (HFT) and other forms of algorithmic trading have emerged since the late 1990s. In all of them, a computer model has a predefined set of rules that automates the process of buying and selling. The computer receives various inputs from throughout the world (market data on price and volume, labor statistics, employment information, for example). The data is parsed and monitored in real time, and automated buy/sell decisions are executed according to how the model interprets the incoming intelligence.

Since the first trade to the market gets the best price, the delivery of a buy or sell order must be as fast as possible. Just a little more than a year ago, firms were concentrating on removing milliseconds from their network; today, a mere 250 nanoseconds make a difference.

The solution is not a matter of contacting the local phone company and deploying its most current high-bandwidth connection to the buildings that house an exchange. Even adopting the leading-edge, highest-speed model of router or multicore processor computer blades might not successfully address the financial world’s hypersensitivity to latency.

Traditionally, a firm has sought to improve its algorithimic trading processes by focusing first on the computer model itself. A lot of mathematicians have invested a lot of hours into tweaking the models that predict how the world is going to behave. Next, firms have sought to boost efficiency by optimizing the servers that process information against models, as well as the switches connecting those servers. More and more frequently, firms often locate or colocate clusters of computers in the financial exchanges themselves to root out proximity delays. Today, a firm’s various building-to-building transport connections are attracting attention from IT staffs.

It’s an entire ecosystem that must be optimized to wring as much latency as possible from algorithmic trading, and many financial firms now seek to take greater control over all of it.

From Buy to Build

Historically, when a financial firm required a connection between two buildings, it procured service from a phone company by ordering a circuit at a monthly fee, and the system would run through the phone company’s network, which typically would have some routing functionality for linking the two locations. Two key things have changed in the last few years.

One, algorithmic trading has crystallized scrutiny on the latency created every time traffic must pass through a router or take an indirect path to a central office. (It’s easy enough to quantify the sum of these delays; any member of the IT staff can look up the impact on the router.) Two, a combination of advances in optical technology that are specifically designed to eliminate latency, plus the lower costs and expanded availability of dark fiber, have enhanced a financial firm’s business case for building a dedicated infrastructure.

The performance gains are in the orders of magnitude — from 120 microseconds of latency for a carrier-provided service between buildings to 40 microseconds in a privately operated, optimized infrastructure. Service reliability can be enhanced with 24-by-7 monitoring predicated on the knowledge that 30 minutes of downtime to a financial firm can mean millions of dollars in lost revenue. The firm becomes more flexible to react and scale for new opportunities, as circuits can be turned up as needed. And it gains a path to continued innovation when partnering with vendors who understand the firm’s low-latency requirements and are under the gun to roll out enhancements to continually shave delays.

These developments have financial network managers asking, “Who can I partner with to sell me dark fiber, and what is the path that the fiber will take?” The ramifications of the answers are far-reaching. Financial firms must ensure that they are not sinking their money in a dark fiber route that snakes jaggedly under roads and up and down manholes, given the fact that eight inches of fiber can translate into a nanosecond of delay.

The next question is, “What is the latency of that path?” That answer demands an understanding of how optical transport works.

Getting into the Glass

There are four common optical networking functions where managers of financial networks often can realize game-changing efficiencies in latency budgets. When traffic beams across glass fiber, it encounters equipment that performs amplification, color conversion, dispersion compensation and regeneration. Each of these Wavelength Division Multiplexing (WDM) functions can be absolutely necessary to successfully carry out transport depending on the specific network environment, but each certainly also will inject some delay into the process. How much delay is something that financial managers must quantify and control if they are to squeeze every drop of latency from their end-to-end infrastructures.

  • Amplification — Optical networks frequently rely on Erbium Doped Fiber Amplifiers (EDFAs) to boost a traffic signal and offset the weakening that occurs across an optical span. Latency in the microseconds is the not-uncommon impact of the conventionally, widely deployed EDFA architectures. Consequently, financial networks supporting algorithmic trading must instead utilize emergent amplifiers optimized to yield lower latency.
     
  • Color conversion — In WDM optical networking, traffic is “transponded” — or, converted to a color of light — for delivery of a signal across a pair of glass fiber. Similarly, multiple colors of light are aggregated across a single fiber; multiple 10 Gbit/s services, for example, are “muxponded” into a single pair of fibers. Again, a financial network’s transponding and muxponding functions must be optimized for low-latency transport because conventional techniques such as Optical Channel Data Unit (ODU) encapsulation and thin film filters introduce too much delay.
     
  • Dispersion compensation — One of the ways that a traffic signal can degrade over the span of an optical link is “chromatic dispersion.” This is a phenomenon in which a signal effectively smears into a spectrum of hues, and it’s particularly common for data travelling at high speed. Installing kilometers of dispersion compensating fiber (DCF) has provided a remedy in some optical networks, but it’s not a wise approach in infrastructures supporting algorithmic trading. Latencies are too great. Optimized methods, like Fiber Bragg gratings, offer a low-latency alternative for counteracting chromatic dispersion.
     
  • Regeneration — Another method for preventing signal degradation over the course of a glass fiber connection is regeneration. Low-latency approaches to the function can help managers of financial networks claim significant efficiencies, because commonly deployed methods of regeneration produce considerable delay.

Conclusion

Contemporary finance is a race between markets. Firms are concerned with nanoseconds of latency in the processes and the systems that underlie algorithmic trading. Shaving eight inches of fiber equates to a one-nanosecond lead. Every element in a firm’s strategy is being evaluated for improvements, and optical fiber transport is targeted as a prime area for optimization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This