Scaling the New Bar for Latency in Financial Networks

By Brian Quigley

August 9, 2010

The bar for what qualifies as a fast connection or “low latency” networking has always been higher in finance than in other areas of corporate networking. It’s never been quite this high, however.

The increased use of innovative algorithmic-trading strategies has levied unprecedented pressure on financial firms to seek out and remove any possible delays that could threaten the successful execution of automated buy and sell orders. Significant time and resources are spent to achieve even modest, incremental improvements in latency at every point in the ecosystem of processes and systems that undergird algorithmic trading.

Managers of financial networks have found that the process of transporting data from one building to another is a common source of those delays. The fiber optic links between stock exchanges, alternative trading systems, colocation providers and information feeds all introduce additional latency into the system. Once, those amounts were deemed negligible — even in financial networking. Today, they are simply unacceptable.

Contemporary Trading’s Latency Intolerance

High-frequency trading (HFT) and other forms of algorithmic trading have emerged since the late 1990s. In all of them, a computer model has a predefined set of rules that automates the process of buying and selling. The computer receives various inputs from throughout the world (market data on price and volume, labor statistics, employment information, for example). The data is parsed and monitored in real time, and automated buy/sell decisions are executed according to how the model interprets the incoming intelligence.

Since the first trade to the market gets the best price, the delivery of a buy or sell order must be as fast as possible. Just a little more than a year ago, firms were concentrating on removing milliseconds from their network; today, a mere 250 nanoseconds make a difference.

The solution is not a matter of contacting the local phone company and deploying its most current high-bandwidth connection to the buildings that house an exchange. Even adopting the leading-edge, highest-speed model of router or multicore processor computer blades might not successfully address the financial world’s hypersensitivity to latency.

Traditionally, a firm has sought to improve its algorithimic trading processes by focusing first on the computer model itself. A lot of mathematicians have invested a lot of hours into tweaking the models that predict how the world is going to behave. Next, firms have sought to boost efficiency by optimizing the servers that process information against models, as well as the switches connecting those servers. More and more frequently, firms often locate or colocate clusters of computers in the financial exchanges themselves to root out proximity delays. Today, a firm’s various building-to-building transport connections are attracting attention from IT staffs.

It’s an entire ecosystem that must be optimized to wring as much latency as possible from algorithmic trading, and many financial firms now seek to take greater control over all of it.

From Buy to Build

Historically, when a financial firm required a connection between two buildings, it procured service from a phone company by ordering a circuit at a monthly fee, and the system would run through the phone company’s network, which typically would have some routing functionality for linking the two locations. Two key things have changed in the last few years.

One, algorithmic trading has crystallized scrutiny on the latency created every time traffic must pass through a router or take an indirect path to a central office. (It’s easy enough to quantify the sum of these delays; any member of the IT staff can look up the impact on the router.) Two, a combination of advances in optical technology that are specifically designed to eliminate latency, plus the lower costs and expanded availability of dark fiber, have enhanced a financial firm’s business case for building a dedicated infrastructure.

The performance gains are in the orders of magnitude — from 120 microseconds of latency for a carrier-provided service between buildings to 40 microseconds in a privately operated, optimized infrastructure. Service reliability can be enhanced with 24-by-7 monitoring predicated on the knowledge that 30 minutes of downtime to a financial firm can mean millions of dollars in lost revenue. The firm becomes more flexible to react and scale for new opportunities, as circuits can be turned up as needed. And it gains a path to continued innovation when partnering with vendors who understand the firm’s low-latency requirements and are under the gun to roll out enhancements to continually shave delays.

These developments have financial network managers asking, “Who can I partner with to sell me dark fiber, and what is the path that the fiber will take?” The ramifications of the answers are far-reaching. Financial firms must ensure that they are not sinking their money in a dark fiber route that snakes jaggedly under roads and up and down manholes, given the fact that eight inches of fiber can translate into a nanosecond of delay.

The next question is, “What is the latency of that path?” That answer demands an understanding of how optical transport works.

Getting into the Glass

There are four common optical networking functions where managers of financial networks often can realize game-changing efficiencies in latency budgets. When traffic beams across glass fiber, it encounters equipment that performs amplification, color conversion, dispersion compensation and regeneration. Each of these Wavelength Division Multiplexing (WDM) functions can be absolutely necessary to successfully carry out transport depending on the specific network environment, but each certainly also will inject some delay into the process. How much delay is something that financial managers must quantify and control if they are to squeeze every drop of latency from their end-to-end infrastructures.

  • Amplification — Optical networks frequently rely on Erbium Doped Fiber Amplifiers (EDFAs) to boost a traffic signal and offset the weakening that occurs across an optical span. Latency in the microseconds is the not-uncommon impact of the conventionally, widely deployed EDFA architectures. Consequently, financial networks supporting algorithmic trading must instead utilize emergent amplifiers optimized to yield lower latency.
     
  • Color conversion — In WDM optical networking, traffic is “transponded” — or, converted to a color of light — for delivery of a signal across a pair of glass fiber. Similarly, multiple colors of light are aggregated across a single fiber; multiple 10 Gbit/s services, for example, are “muxponded” into a single pair of fibers. Again, a financial network’s transponding and muxponding functions must be optimized for low-latency transport because conventional techniques such as Optical Channel Data Unit (ODU) encapsulation and thin film filters introduce too much delay.
     
  • Dispersion compensation — One of the ways that a traffic signal can degrade over the span of an optical link is “chromatic dispersion.” This is a phenomenon in which a signal effectively smears into a spectrum of hues, and it’s particularly common for data travelling at high speed. Installing kilometers of dispersion compensating fiber (DCF) has provided a remedy in some optical networks, but it’s not a wise approach in infrastructures supporting algorithmic trading. Latencies are too great. Optimized methods, like Fiber Bragg gratings, offer a low-latency alternative for counteracting chromatic dispersion.
     
  • Regeneration — Another method for preventing signal degradation over the course of a glass fiber connection is regeneration. Low-latency approaches to the function can help managers of financial networks claim significant efficiencies, because commonly deployed methods of regeneration produce considerable delay.

Conclusion

Contemporary finance is a race between markets. Firms are concerned with nanoseconds of latency in the processes and the systems that underlie algorithmic trading. Shaving eight inches of fiber equates to a one-nanosecond lead. Every element in a firm’s strategy is being evaluated for improvements, and optical fiber transport is targeted as a prime area for optimization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This