TeraGrid 2010 Keynote: The Physics of Black Holes with Cactus

By Michael Schneider

August 11, 2010

Opening a new window on the universe — that’s the promise of gravitational wave astronomy, and its fulfillment presents a scientific computing challenge that might almost be akin to pulling light out of a black hole, if that were possible. Or maybe the more appropriate analogy is water in a desert, where sometimes the solution is cactus.
Gabrielle AllenMake that a capital “C” — as in Cactus, an open, collaborative software framework for numerical relativity that since 1997 has enabled research that underlies more than 200 scientific papers and 30 student theses. That and more than that, in a fast-moving, information-packed presentation, was the topic of Gabrielle Allen’s keynote talk, Tuesday, August 3 at TeraGrid ’10, the fourth annual conference of the TeraGrid, in Pittsburgh, Pa.

Allen is associate professor in Computer Science at Louisiana State University, and a faculty member at LSU’s Center for Computation & Technology. Before moving there in 2003, she led the computer science area of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Potsdam, Germany. At AEI, she was a PI for the European GridLab project, and led the initial development of Cactus.

She began her talk, “Cyberinfrastructure for Numerical Relativity,” by noting that she’s been a TeraGrid user since 2001. “Accurately modeling astrophysical systems that are governed by Einstein’s Equations of General Relativity, such as black holes, stellar core collapse or gamma ray bursts,” she added, “requires the use of cutting-edge computational resources and software.”

Solving the problems of this field of science, Gravitational Wave Physics, depends on interactions between modern theory, observation and computation, and all three aspects, says Allen, are leading to new discoveries. Gravitational waves are one of the startling aspects of Einstein’s predictions from general relativity. Measurements of the decaying orbits of binary pulsars agree with Einstein’s prediction of gravity waves, yet even now these waves haven’t been directly observed.

Two large projects have mounted gravity wave detectors — the U.S. LIGO (Laser Interferometer Gravitational Wave Observatory) project and GEO 600 in Germany — to test Einstein’s theory, but these extremely sensitive instruments need to be precisely tuned and use complex data analysis to recognize the delicate signatures of gravity waves from events in deep space. For this the physicists need numerical simulations.

The numerical problem is finding ways to solve the Einstein equations that govern gravity-wave phenomena. “There are thousands of terms on the right-hand side,” says Allen, “and these equations are very difficult to work with.” The initial challenge has been modeling binary black holes — two black holes in orbit around each other — a relatively “simple” system with relatively few parameters, as a test case for LIGO.

Recent work using TeraGrid resources at multiple sites, a project of an international team that included Allen’s LSU colleague Erik Schnetter, a research professor in the Department of Physics and Astronomy, modeled the binary black hole problem with unprecedented detail. Allen describes this work, featured on the cover of the 2009 TeraGrid Science Highlights publication, as an outcome of what has so far been a 40-year plus effort to model gravity waves from binary black holes, which has only now arrived at numerically generated waveforms. “We still can’t do extreme mass ratios or very fast spins,” she says, “but this has opened the door to modeling more complex scenarios, such as general relativistic hydrodynamics.”

Allen went on to describe the essential elements of cyberinfrastructure needed to move this work forward, and elaborated on the Cactus framework — so-called from its design of a central core (“flesh”) which connects to application modules (“thorns”) through an extensible interface. It’s a modular system, with thorns that are defined by parameters, variables and methods, and the flesh binds it together.

Cactus derived originally, Allen explained, from a mid-90s Black Hole Grand Challenge project, with multiple groups collaborating. “This came out of the vision of Ed Seidel,” she said. Seidel, who recently ended a term as director of NSF’s Office of Cyberinfrastructure, worked during this period at AEI in Germany, and recognized needs — that have been implemented through Cactus — for modularity, for easy code reuse, community sharing and development.

A recent set of Cactus thorns, Allen pointed out, has implemented adaptive mesh-refinement (AMR). Developed by Schnetter, this has allowed many groups to have access to AMR with little code change. “We can scale the AMR up to around 16,000 processors,” noted Allen. Cactus also implements automatic code generation through “Kranc” — a Mathematica tool to generate Cactus thorns from PDEs. “Your turn the Kranc and it spits out complete thorns of Cactus.”

Cactus interfaces with the Einstein Toolkit, a consortium that develops and supports open software for relativistic astrophysics. “Our aim,” said Allen, “is to provide the core computational tools than can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of emerging petascale computers and advanced cyberinfrastructure.” The consortium includes 55 members at 17 sites in nine countries.

Among many challenges to be faced, Allen observed that changes in academic culture are needed to support the model of open collaboration versus competition among research teams. “We need incentives for faculty to encourage postdocs and students to use and contribute to community software.”

“Everything is a challenge,” she added, “in this kind of work. Nothing works as well as you’d like. The TeraGrid has been a big friend of numerical relativity, and has helped us to develop the kind of community we need — especially for students, it has been amazingly helpful. It provides access for students to the hardware we use, and the software and best practices. All these things are crucial.”

The biggest challenge ahead, she added, is how to handle tremendous amounts of data. “Everything is going to be about data very soon. We need to be ready for that. It is changing the world of science. There is a whole sociology of how data is going to be used in academia. We have a big chance to do this properly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This