TeraGrid 2010 Keynote: The Physics of Black Holes with Cactus

By Michael Schneider

August 11, 2010

Opening a new window on the universe — that’s the promise of gravitational wave astronomy, and its fulfillment presents a scientific computing challenge that might almost be akin to pulling light out of a black hole, if that were possible. Or maybe the more appropriate analogy is water in a desert, where sometimes the solution is cactus.
Gabrielle AllenMake that a capital “C” — as in Cactus, an open, collaborative software framework for numerical relativity that since 1997 has enabled research that underlies more than 200 scientific papers and 30 student theses. That and more than that, in a fast-moving, information-packed presentation, was the topic of Gabrielle Allen’s keynote talk, Tuesday, August 3 at TeraGrid ’10, the fourth annual conference of the TeraGrid, in Pittsburgh, Pa.

Allen is associate professor in Computer Science at Louisiana State University, and a faculty member at LSU’s Center for Computation & Technology. Before moving there in 2003, she led the computer science area of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Potsdam, Germany. At AEI, she was a PI for the European GridLab project, and led the initial development of Cactus.

She began her talk, “Cyberinfrastructure for Numerical Relativity,” by noting that she’s been a TeraGrid user since 2001. “Accurately modeling astrophysical systems that are governed by Einstein’s Equations of General Relativity, such as black holes, stellar core collapse or gamma ray bursts,” she added, “requires the use of cutting-edge computational resources and software.”

Solving the problems of this field of science, Gravitational Wave Physics, depends on interactions between modern theory, observation and computation, and all three aspects, says Allen, are leading to new discoveries. Gravitational waves are one of the startling aspects of Einstein’s predictions from general relativity. Measurements of the decaying orbits of binary pulsars agree with Einstein’s prediction of gravity waves, yet even now these waves haven’t been directly observed.

Two large projects have mounted gravity wave detectors — the U.S. LIGO (Laser Interferometer Gravitational Wave Observatory) project and GEO 600 in Germany — to test Einstein’s theory, but these extremely sensitive instruments need to be precisely tuned and use complex data analysis to recognize the delicate signatures of gravity waves from events in deep space. For this the physicists need numerical simulations.

The numerical problem is finding ways to solve the Einstein equations that govern gravity-wave phenomena. “There are thousands of terms on the right-hand side,” says Allen, “and these equations are very difficult to work with.” The initial challenge has been modeling binary black holes — two black holes in orbit around each other — a relatively “simple” system with relatively few parameters, as a test case for LIGO.

Recent work using TeraGrid resources at multiple sites, a project of an international team that included Allen’s LSU colleague Erik Schnetter, a research professor in the Department of Physics and Astronomy, modeled the binary black hole problem with unprecedented detail. Allen describes this work, featured on the cover of the 2009 TeraGrid Science Highlights publication, as an outcome of what has so far been a 40-year plus effort to model gravity waves from binary black holes, which has only now arrived at numerically generated waveforms. “We still can’t do extreme mass ratios or very fast spins,” she says, “but this has opened the door to modeling more complex scenarios, such as general relativistic hydrodynamics.”

Allen went on to describe the essential elements of cyberinfrastructure needed to move this work forward, and elaborated on the Cactus framework — so-called from its design of a central core (“flesh”) which connects to application modules (“thorns”) through an extensible interface. It’s a modular system, with thorns that are defined by parameters, variables and methods, and the flesh binds it together.

Cactus derived originally, Allen explained, from a mid-90s Black Hole Grand Challenge project, with multiple groups collaborating. “This came out of the vision of Ed Seidel,” she said. Seidel, who recently ended a term as director of NSF’s Office of Cyberinfrastructure, worked during this period at AEI in Germany, and recognized needs — that have been implemented through Cactus — for modularity, for easy code reuse, community sharing and development.

A recent set of Cactus thorns, Allen pointed out, has implemented adaptive mesh-refinement (AMR). Developed by Schnetter, this has allowed many groups to have access to AMR with little code change. “We can scale the AMR up to around 16,000 processors,” noted Allen. Cactus also implements automatic code generation through “Kranc” — a Mathematica tool to generate Cactus thorns from PDEs. “Your turn the Kranc and it spits out complete thorns of Cactus.”

Cactus interfaces with the Einstein Toolkit, a consortium that develops and supports open software for relativistic astrophysics. “Our aim,” said Allen, “is to provide the core computational tools than can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of emerging petascale computers and advanced cyberinfrastructure.” The consortium includes 55 members at 17 sites in nine countries.

Among many challenges to be faced, Allen observed that changes in academic culture are needed to support the model of open collaboration versus competition among research teams. “We need incentives for faculty to encourage postdocs and students to use and contribute to community software.”

“Everything is a challenge,” she added, “in this kind of work. Nothing works as well as you’d like. The TeraGrid has been a big friend of numerical relativity, and has helped us to develop the kind of community we need — especially for students, it has been amazingly helpful. It provides access for students to the hardware we use, and the software and best practices. All these things are crucial.”

The biggest challenge ahead, she added, is how to handle tremendous amounts of data. “Everything is going to be about data very soon. We need to be ready for that. It is changing the world of science. There is a whole sociology of how data is going to be used in academia. We have a big chance to do this properly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This