Challenges Ahead for HPC Applications in the Cloud

By Dr. Mohamed Ahmed

August 16, 2010

High performance computing is known for its ability to accelerate scientific experiments and discovery through modeling and simulation. The complexity of the mathematical models and huge amounts of data that must be processed in a short time mandates the use of high throughput hardware infrastructure and optimized software stack. HPC applications very quickly consume processing power, memory, storage, and network bandwidth for a relatively short time. Other distributed systems utilize the aggregated power of the cluster but do not necessary utilize all available resources as aggressively in such a short amount of time as HPC applications do.

In essence, this is why cloud services and infrastructure may make a perfect sense to most businesses. It is expected that 80% of the general purpose applications will be hosted in clouds by year 2020. However, for HPC, there needs to be a deeper analysis of how HPC users can make use of cloud architectures.

So, the main objective of cloud computing is to allow end users to plug their applications into virtual machines in a manner quite similar to hosting them on physically dedicated machines. Users should be able to access and manage this infrastructure exactly the same way they would if they had the physical machines on-premises.

In HPC, applications are developed to deal with large numbers of compute nodes, with relatively large memories and huge storage capacities. Keep in mind that cloud services can be provided at two levels: (1) cloud infrastructure, or (2) cloud-hosted Applications. The first type targets advanced users who would like to utilize cloud infrastructure to build their own proprietary software serving their specific needs. The second type targets users who would like to use readymade applications running on top of the cloud infrastructure without digging into the details of the virtualized resources exposed by the cloud, such as storage, processing, interconnection, etc.

In this article I will be focusing mainly on the virtualization of cloud infrastructure and usage pattern of its recourses. I’ll briefly touch upon possible HPC applications that can be offered through cloud Infrastructure and characterize their utilization of resources in such infrastructure.

Before digging into how the cloud infrastructure can expose it services to HPC users, let’s focus first on the building unit: a virtualized node. Node virtualization is not a straight forward task for HPC usage patterns. Let me go with you through the possible usage patterns. It may appear as a low level analysis, but I think this will give us a deeper understanding of what is actually required to build HPC in the cloud.

I’ll be discussing processing, memory, storage, and network usage patterns. I’ll try to uncover also some of the overall required policies and mechanism for resources management and scheduling. This is very critical aspect in providing the appropriate services to HPC users through the cloud.

Processing Patterns
 
HPC applications are, to a great extent, scientific algorithms focusing on simulating mathematical models in earth science, chemistry, physics, etc. In addition to the main objective of utilizing the aggregated processing power of large HPC clusters, these applications focus also on utilizing micro resources inside each processor, especially with multi-core processors. Utilizing multi-threading for a fine-grained parallelism is a very critical component in speeding up these applications. Also, these applications utilize even more specific processor features such as the pipeline organization, branch prediction, and instructions prefetching to speedup execution.

The other family of HPC applications is based on combinatorial algorithms, such as graph traversal, sorting, and string matching. These algorithms utilize basically integer units inside the microprocessor. However, they still utilize multi-threading capabilities inside each compute node to speedup execution.

In general purpose and business-oriented applications, multi-threaded models might be utilized. However, multi-threaded models are deployed to serve high level requests, such as different database transactions in order to gain execution speedup. Threads can be easily mapped to virtual processors and scheduled by the OS to the physical processors.

It is quite challenging to manage virtualization of processors if accelerators are provided in the cloud, such as the Cell processor or GPGPUs. Each process may utilize one or more GPUs to accelerate some compute intensive parts, or kernels. The question is: how can we virtualize and schedule these accelerators? Are they going to accessible directly through hosted applications? Or a lightweight virtualization mechanism responsible mainly for scheduling and accounting the accelerators? Some research efforts such as GViM and GFusion are actively working on the area of accelerators virtualization.

Memory

Most HPC applications swing between memory intensity and arithmetic intensity. The more floating point operations (flops) required per one byte accessed from system’s main memory, the higher the application’s arithmetic intensity, and vice versa. The key here is not only the amount of memory required in a single virtualized node. It is also about the usage patterns related to processing requirements. HPC applications usually use memory in a very demanding pattern. The better the algorithm is designed, the peak bandwidth is maintained most of the algorithm’s execution life time.

Furthermore, as arithmetic intensity decreases,more pressure is added over the memory system. The processor is spending less time computing and more time moving data to or from system’s memory. Also, advanced HPC developers often times consider physical properties of the memory system to maximize bandwidth, such as number of banks, size of memory controller buffer, latency, maximum bandwidth, etc.

I think standard virtualization abstracts all these hardware properties and consider the standard memory usage pattern, i.e. small requests that do not form stream of data movement. I also believe that some good research in the area of memory abstraction can be done. Hypervisors need to consider multiplexing the physical memory in a way that would maintain most of its physical properties. This should give more space for memory performance optimization.   

Storage

HPC applications need two types of permanent storage: (1) I/O, and (2) Scratch storage. The first type stores the input data and final execution output, such as the FFT points, input matrixes, etc. The second storage type is basically used for storing intermediate results, check-pointing or for volatile input sets.  I/O storage needs to be stored in a centralized place so that all threads or processes in a cluster can have unconditional access to it.  I/O reads or writes take place in bursts. All processes read input data sets almost at the same time and write output also concurrently, assuming good load balancing. This mandates storage devices with very high bandwidth to satisfy many requests at the same time. From my observations, most HPC applications ask for relatively large chunks of data in every I/O attempt, which would reduce the effect of read or write latency on these devices.

I see most cloud systems provide the conventional physically centralized storage devices connected to a high speed interconnection. This architecture might be a good one if the whole HPC system is working on a single problem at a given time. However, if multiple applications are using resources through a cloud, this physical architecture may need to be rethought. Distributed rack-aware file systems, such as Hadoop Distributed File System (HDFS), might be a very good option in some cases. Building multiple storage devices and attaching each one to a few racks or a cabinet is another excellent option. It will match the HPC applications utilizing the cloud architecture; each application will use one or few racks. It makes sense to place storage near the processors. I think possibilities are many and may need a separate article, so I will come back to that later.

The scratch storage by default should be local to each processor. Most HPC architectures provide such scratch storage spaces. Each rack would have one or more hard disks to quickly store and retrieve scratch data. This scratch data is volatile and usually get erased when application execution ends. I think the best reconsideration is replace these hard disks with the new SSD to save power and speed up execution since accessing them might be quite frequent.

Networking

Using the cloud model, there are three sources of network traffic: (1) Remote user communication, (2) I/O, and (3) Inter-process communication. Remote user communication takes place when large data sets are being sent or received from a remote site. End user usually prepares the input or retrieves the results. It can be optimized again by distributing storage to different NAS devices. However, utilizing systems such as Hadoop Distributed File System (HDFS) may not be the optimum solution if users are reading and writing large chunks of data in most of their HPC applications. 

This architecture will overload the internal interconnection and compute nodes as well. Inter-processor communication, on the other hand, is characterized by high frequency and small data chunks. Latency in this case is a very important factor. In addition to low latency networking equipment, this bottleneck can be easily avoided by placing virtual nodes as close as possible to each other, on the same physical node if possible.

Thus far, I have tried to pinpoint some of the qualitative aspects of resources usage patterns. Scheduling and virtualizing resources same way done for general purpose applications, I think will produce disappointing results. Cloud infrastructure is still lucrative if comparing its economics to building in-house HPC machines. However, cloud for HPC has to be efficient enough to reach proper performance ceilings without disappointing customers who probably experienced at a certain point to run their HPC applications on dedicated machines.

Subsequent articles, which will be featured here as part of a continued series, will discuss some of my findings in characterizing resources usage of specific HPC applications, such as BLAST, DGEMM, FFT, etc., using the cloud infrastructure. 

About the Author

Mohamed Ahmed is an assistant professor at the department of computer science and engineering of the American University in Cairo (AUC). He got his BS and MSc from the AUC. He received his PhD from the University Of Connecticut (UCONN). During his masters he was one of the early researchers who built a component-based operating system using object oriented technologies.  He decided to move to the wild world of high performance computing (HPC) working in different sub-domains, such as performance engineering, HPC applications, and cloud computing for HPC systems.

Dr. Mohamed has one provisional patent and several peer-reviewed publications in operating systems engineering, reliability, threading models, and programming models. Dr. Mohamed’s research interests basically fall under HPC. His current focus is in utilizing multi-/many-core microprocessors in massively parallel systems. One of his objectives is to make HPC systems available for both researchers in other science domains and industry in a faction of current cost of HPC infrastructure and ready to use in a very short time. He is currently working on porting applications and algorithms for biology, material sciences, and computational chemistry to new compute acceleration architectures such as GPGPUs.

For more, please see:
 
– http://www.cse.aucegypt.edu/~mahmed/

– http://MohamedFAhmed.wordpress.com/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This