Startup Aims to Transform Computing with Probability Processing

By Michael Feldman

August 16, 2010

MIT spin-out Lyric Semiconductor Inc. has launched a new breed of integrated circuits that replaces the binary logic of traditional computing with probabilistic logic. The aim is to deliver a much more efficient architecture for applications based on probability computing. For these types of workloads, the company is promising orders-of-magnitude improvement in energy efficiency, performance and cost.

Essentially, what Lyric has come up with is a fifth processor architecture, following CPUs, GPUs, DSPs, and FPGAs. The technology grew out of Ben Vigoda’s Ph.D. thesis work at MIT more than 10 years ago. In 2006, Vigoda founded the company, along with IC designer David Reynolds and Analog Devices CEO Ray Stata. Vigoda became the CEO, Reynolds the VP of product development, and Stata took the post of chairman of Lyric’s board (with Stata Venture Partners listed as the lead investor). The company has filed 50 patents to protect its intellectual property and raised over $20 million to get the business off the ground. About $18 million of that funding was injected from DARPA and other government agencies to spur the research and development effort and make probability processing a viable technology.

The goal is to construct hardware circuitry and software purpose-built for probability applications. With conventional digital technology, processing has to follow a strictly linear path. This is fine for software like operating systems, spreadsheets, word processing, and database transactions, where the computing consists of straightforward calculations or data movement. “But most of the interesting things happening nowadays don’t really fit into that model,” says Reynolds. From his perspective, the goal of more and more software today is to find the best fit or most likely answer (or answers) to a problem.

Most data mining, predictive analytics, pattern recognition, and modeling/simulation codes fall into this category. That encompasses a wide range of applications including Web searching, financial modeling, genome sequence analysis, speech recognition, climate modeling, credit fraud detection, spam filtering, and financial modeling, among many others. People tend to associate these probability-based applications with human-like intelligence, and this is clearly where software, in general, is moving.

Even today, the average person uses probability computing on a fairly regular basis. For example, when you hop onto Amazon’s website, the software behind the scenes attempts to predict what product you might be interested in buying, basing its suggestions on past shopping behavior and what you’re currently clicking on. If you do make a purchase, the credit card company’s software tries to determine if the charge is fraudulent or not, again based on past buying habits. Both of these pieces of software are searching for the most likely result, rather than a specific answer. “So these applications are not a great fit for the traditional digital processor as we know it,” says Reynolds.

Probability computing has been around for decades, but most of the work has involved developing languages and algorithms, which are subsequently applied to vanilla digital computers. Lyric’s founders were convinced that they needed to rethink the design of the underlying circuitry to get the optimal solution. What they came up with was the concept of pbits (probability bits), which unlike Boolean bits can represent a lot more than two states. Lyric is not divulging exactly how many states that might be, but according to Reynolds: “Suffice to say that we have all the states we need for the applications we’ve looked at so far.”

To process pbits, Lyric has designed a set of standard probability logic gates that can be connected to one another multi-directionally. So instead of stepping through an application in a linear sequence using Boolean gates, more complex operations, such as getting the intersection of data, can be performed on multiple variables in parallel. That, says Reynolds, is a much more natural way of implementing parallelism than CPUs provide with multicore and multi-threading architectures.

According to him, for probabilistic-type operations, what took 500 transistors with conventional digital logic can be distilled down to just a handful of probability transistors. Lyric predicts that a single probability processor will be able to increase computational capability by two or three orders of magnitude compared to today’s server chips, with commensurate savings in cost, power and space.

The company’s first commercial product will be aimed at advanced error correction for NAND flash memory. Called Lyric Error Correction (LEC), it’s designed to relieve the flash memory ECC bottleneck, which is becoming a constraint as semiconductor process geometries shrink. On the 30nm process, flash memory errors are generated at the rate of 1 in 1,000. On the next generation technology, it will be 1 in 100. That means the ECC component of the controller, which is already the largest piece of the device, may become impractical to implement.

As it turns out advanced ECC logic is based on probabilities, so it’s a nice fit for Lyric-style circuits. The company is promising a 30-fold reduction in die real estate (for 1 Gbps bandwidths) and a 12-fold improvement in power. The company has ported the device to different process nodes using TSMC as the fab partner, and is claiming yields typical for this class of application. LEC is available for licensing today, with product integration expected in 12 months.

But the real payoff for Lyric is at least a few years down the road. The company is developing the GP5, which stands for general-purpose programmable probability processing platform. The technology is aimed at the broader set of probability applications mentioned above, and, according to the company, will be up to 1,000 times more efficient at these types of tasks than current x86 CPUs. The first samples of the GP5 are slated to appear in 2013.

According to Mira Wilczek, Lyric’s director of business development, the initial commercial implementations of the GP5 are likely to be packaged inside an appliance or embedded device, such as a Web search server or a handheld speech recognition device. A more general-purpose use case could involve a GP5 used as a coprocessor in conjunction with a CPU.

For high performance computing work, the latter configuration could be a way to accelerate performance on applications such as materials modeling and whole genome analysis, in much the same way as GPGPUs are being employed today. “Just like a GPU exploits the vector nature of graphics computation, we exploit the typical structures that our algorithms take for probability computation,” explains Wilczek.

The downside to the new architecture is that conventional programming languages, like C, Fortran and Java, are not very good at expressing probability algorithms. Lyric has come up with its own language, called PSBL (Probability Synthesizes to Bayesian Logic) that can be compiled to their hardware. The language is a rule-based language, where the programmer specifies the constraints of the problems, rather than how to solve it. Other probability-type programming languages, like R and the Microsoft’s Infer.NET could also presumably be targeted to Lyric’s architecture.

PSBL 1.0 will be licensed to select partners in Q4 2010 with a second version slated for Q4 2010. In the absence of Lyric hardware, the PSBL code can be compiled to run in a simulator on a conventional computer, albeit much more slowly. When the GP5 arrives in 2013, the hope is to have the foundation of a probability computing ecosystem already in place.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This