Startup Aims to Transform Computing with Probability Processing

By Michael Feldman

August 16, 2010

MIT spin-out Lyric Semiconductor Inc. has launched a new breed of integrated circuits that replaces the binary logic of traditional computing with probabilistic logic. The aim is to deliver a much more efficient architecture for applications based on probability computing. For these types of workloads, the company is promising orders-of-magnitude improvement in energy efficiency, performance and cost.

Essentially, what Lyric has come up with is a fifth processor architecture, following CPUs, GPUs, DSPs, and FPGAs. The technology grew out of Ben Vigoda’s Ph.D. thesis work at MIT more than 10 years ago. In 2006, Vigoda founded the company, along with IC designer David Reynolds and Analog Devices CEO Ray Stata. Vigoda became the CEO, Reynolds the VP of product development, and Stata took the post of chairman of Lyric’s board (with Stata Venture Partners listed as the lead investor). The company has filed 50 patents to protect its intellectual property and raised over $20 million to get the business off the ground. About $18 million of that funding was injected from DARPA and other government agencies to spur the research and development effort and make probability processing a viable technology.

The goal is to construct hardware circuitry and software purpose-built for probability applications. With conventional digital technology, processing has to follow a strictly linear path. This is fine for software like operating systems, spreadsheets, word processing, and database transactions, where the computing consists of straightforward calculations or data movement. “But most of the interesting things happening nowadays don’t really fit into that model,” says Reynolds. From his perspective, the goal of more and more software today is to find the best fit or most likely answer (or answers) to a problem.

Most data mining, predictive analytics, pattern recognition, and modeling/simulation codes fall into this category. That encompasses a wide range of applications including Web searching, financial modeling, genome sequence analysis, speech recognition, climate modeling, credit fraud detection, spam filtering, and financial modeling, among many others. People tend to associate these probability-based applications with human-like intelligence, and this is clearly where software, in general, is moving.

Even today, the average person uses probability computing on a fairly regular basis. For example, when you hop onto Amazon’s website, the software behind the scenes attempts to predict what product you might be interested in buying, basing its suggestions on past shopping behavior and what you’re currently clicking on. If you do make a purchase, the credit card company’s software tries to determine if the charge is fraudulent or not, again based on past buying habits. Both of these pieces of software are searching for the most likely result, rather than a specific answer. “So these applications are not a great fit for the traditional digital processor as we know it,” says Reynolds.

Probability computing has been around for decades, but most of the work has involved developing languages and algorithms, which are subsequently applied to vanilla digital computers. Lyric’s founders were convinced that they needed to rethink the design of the underlying circuitry to get the optimal solution. What they came up with was the concept of pbits (probability bits), which unlike Boolean bits can represent a lot more than two states. Lyric is not divulging exactly how many states that might be, but according to Reynolds: “Suffice to say that we have all the states we need for the applications we’ve looked at so far.”

To process pbits, Lyric has designed a set of standard probability logic gates that can be connected to one another multi-directionally. So instead of stepping through an application in a linear sequence using Boolean gates, more complex operations, such as getting the intersection of data, can be performed on multiple variables in parallel. That, says Reynolds, is a much more natural way of implementing parallelism than CPUs provide with multicore and multi-threading architectures.

According to him, for probabilistic-type operations, what took 500 transistors with conventional digital logic can be distilled down to just a handful of probability transistors. Lyric predicts that a single probability processor will be able to increase computational capability by two or three orders of magnitude compared to today’s server chips, with commensurate savings in cost, power and space.

The company’s first commercial product will be aimed at advanced error correction for NAND flash memory. Called Lyric Error Correction (LEC), it’s designed to relieve the flash memory ECC bottleneck, which is becoming a constraint as semiconductor process geometries shrink. On the 30nm process, flash memory errors are generated at the rate of 1 in 1,000. On the next generation technology, it will be 1 in 100. That means the ECC component of the controller, which is already the largest piece of the device, may become impractical to implement.

As it turns out advanced ECC logic is based on probabilities, so it’s a nice fit for Lyric-style circuits. The company is promising a 30-fold reduction in die real estate (for 1 Gbps bandwidths) and a 12-fold improvement in power. The company has ported the device to different process nodes using TSMC as the fab partner, and is claiming yields typical for this class of application. LEC is available for licensing today, with product integration expected in 12 months.

But the real payoff for Lyric is at least a few years down the road. The company is developing the GP5, which stands for general-purpose programmable probability processing platform. The technology is aimed at the broader set of probability applications mentioned above, and, according to the company, will be up to 1,000 times more efficient at these types of tasks than current x86 CPUs. The first samples of the GP5 are slated to appear in 2013.

According to Mira Wilczek, Lyric’s director of business development, the initial commercial implementations of the GP5 are likely to be packaged inside an appliance or embedded device, such as a Web search server or a handheld speech recognition device. A more general-purpose use case could involve a GP5 used as a coprocessor in conjunction with a CPU.

For high performance computing work, the latter configuration could be a way to accelerate performance on applications such as materials modeling and whole genome analysis, in much the same way as GPGPUs are being employed today. “Just like a GPU exploits the vector nature of graphics computation, we exploit the typical structures that our algorithms take for probability computation,” explains Wilczek.

The downside to the new architecture is that conventional programming languages, like C, Fortran and Java, are not very good at expressing probability algorithms. Lyric has come up with its own language, called PSBL (Probability Synthesizes to Bayesian Logic) that can be compiled to their hardware. The language is a rule-based language, where the programmer specifies the constraints of the problems, rather than how to solve it. Other probability-type programming languages, like R and the Microsoft’s Infer.NET could also presumably be targeted to Lyric’s architecture.

PSBL 1.0 will be licensed to select partners in Q4 2010 with a second version slated for Q4 2010. In the absence of Lyric hardware, the PSBL code can be compiled to run in a simulator on a conventional computer, albeit much more slowly. When the GP5 arrives in 2013, the hope is to have the foundation of a probability computing ecosystem already in place.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This