Startup Aims to Transform Computing with Probability Processing

By Michael Feldman

August 16, 2010

MIT spin-out Lyric Semiconductor Inc. has launched a new breed of integrated circuits that replaces the binary logic of traditional computing with probabilistic logic. The aim is to deliver a much more efficient architecture for applications based on probability computing. For these types of workloads, the company is promising orders-of-magnitude improvement in energy efficiency, performance and cost.

Essentially, what Lyric has come up with is a fifth processor architecture, following CPUs, GPUs, DSPs, and FPGAs. The technology grew out of Ben Vigoda’s Ph.D. thesis work at MIT more than 10 years ago. In 2006, Vigoda founded the company, along with IC designer David Reynolds and Analog Devices CEO Ray Stata. Vigoda became the CEO, Reynolds the VP of product development, and Stata took the post of chairman of Lyric’s board (with Stata Venture Partners listed as the lead investor). The company has filed 50 patents to protect its intellectual property and raised over $20 million to get the business off the ground. About $18 million of that funding was injected from DARPA and other government agencies to spur the research and development effort and make probability processing a viable technology.

The goal is to construct hardware circuitry and software purpose-built for probability applications. With conventional digital technology, processing has to follow a strictly linear path. This is fine for software like operating systems, spreadsheets, word processing, and database transactions, where the computing consists of straightforward calculations or data movement. “But most of the interesting things happening nowadays don’t really fit into that model,” says Reynolds. From his perspective, the goal of more and more software today is to find the best fit or most likely answer (or answers) to a problem.

Most data mining, predictive analytics, pattern recognition, and modeling/simulation codes fall into this category. That encompasses a wide range of applications including Web searching, financial modeling, genome sequence analysis, speech recognition, climate modeling, credit fraud detection, spam filtering, and financial modeling, among many others. People tend to associate these probability-based applications with human-like intelligence, and this is clearly where software, in general, is moving.

Even today, the average person uses probability computing on a fairly regular basis. For example, when you hop onto Amazon’s website, the software behind the scenes attempts to predict what product you might be interested in buying, basing its suggestions on past shopping behavior and what you’re currently clicking on. If you do make a purchase, the credit card company’s software tries to determine if the charge is fraudulent or not, again based on past buying habits. Both of these pieces of software are searching for the most likely result, rather than a specific answer. “So these applications are not a great fit for the traditional digital processor as we know it,” says Reynolds.

Probability computing has been around for decades, but most of the work has involved developing languages and algorithms, which are subsequently applied to vanilla digital computers. Lyric’s founders were convinced that they needed to rethink the design of the underlying circuitry to get the optimal solution. What they came up with was the concept of pbits (probability bits), which unlike Boolean bits can represent a lot more than two states. Lyric is not divulging exactly how many states that might be, but according to Reynolds: “Suffice to say that we have all the states we need for the applications we’ve looked at so far.”

To process pbits, Lyric has designed a set of standard probability logic gates that can be connected to one another multi-directionally. So instead of stepping through an application in a linear sequence using Boolean gates, more complex operations, such as getting the intersection of data, can be performed on multiple variables in parallel. That, says Reynolds, is a much more natural way of implementing parallelism than CPUs provide with multicore and multi-threading architectures.

According to him, for probabilistic-type operations, what took 500 transistors with conventional digital logic can be distilled down to just a handful of probability transistors. Lyric predicts that a single probability processor will be able to increase computational capability by two or three orders of magnitude compared to today’s server chips, with commensurate savings in cost, power and space.

The company’s first commercial product will be aimed at advanced error correction for NAND flash memory. Called Lyric Error Correction (LEC), it’s designed to relieve the flash memory ECC bottleneck, which is becoming a constraint as semiconductor process geometries shrink. On the 30nm process, flash memory errors are generated at the rate of 1 in 1,000. On the next generation technology, it will be 1 in 100. That means the ECC component of the controller, which is already the largest piece of the device, may become impractical to implement.

As it turns out advanced ECC logic is based on probabilities, so it’s a nice fit for Lyric-style circuits. The company is promising a 30-fold reduction in die real estate (for 1 Gbps bandwidths) and a 12-fold improvement in power. The company has ported the device to different process nodes using TSMC as the fab partner, and is claiming yields typical for this class of application. LEC is available for licensing today, with product integration expected in 12 months.

But the real payoff for Lyric is at least a few years down the road. The company is developing the GP5, which stands for general-purpose programmable probability processing platform. The technology is aimed at the broader set of probability applications mentioned above, and, according to the company, will be up to 1,000 times more efficient at these types of tasks than current x86 CPUs. The first samples of the GP5 are slated to appear in 2013.

According to Mira Wilczek, Lyric’s director of business development, the initial commercial implementations of the GP5 are likely to be packaged inside an appliance or embedded device, such as a Web search server or a handheld speech recognition device. A more general-purpose use case could involve a GP5 used as a coprocessor in conjunction with a CPU.

For high performance computing work, the latter configuration could be a way to accelerate performance on applications such as materials modeling and whole genome analysis, in much the same way as GPGPUs are being employed today. “Just like a GPU exploits the vector nature of graphics computation, we exploit the typical structures that our algorithms take for probability computation,” explains Wilczek.

The downside to the new architecture is that conventional programming languages, like C, Fortran and Java, are not very good at expressing probability algorithms. Lyric has come up with its own language, called PSBL (Probability Synthesizes to Bayesian Logic) that can be compiled to their hardware. The language is a rule-based language, where the programmer specifies the constraints of the problems, rather than how to solve it. Other probability-type programming languages, like R and the Microsoft’s Infer.NET could also presumably be targeted to Lyric’s architecture.

PSBL 1.0 will be licensed to select partners in Q4 2010 with a second version slated for Q4 2010. In the absence of Lyric hardware, the PSBL code can be compiled to run in a simulator on a conventional computer, albeit much more slowly. When the GP5 arrives in 2013, the hope is to have the foundation of a probability computing ecosystem already in place.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This