TeraGrid 2010 Keynote: Attendees Peer into Blue Waters

By Jan Zverina

August 16, 2010

NCSA’s Wilhelmson discusses first research projects for supercomputer’s 2011 debut

Blue Waters, expected to be one of the most powerful supercomputers in the world for open scientific research when it comes online next year, is being counted on to help solve some of the world’s most vexing scientific and social challenges, from figuring out how the first galaxies formed to simulating the spread of disease across large populations to better prepare us for such medical emergencies.

Bob WilhelmsonAt this year’s TeraGrid conference, Bob Wilhelmson, recently retired chief science officer of the National Center for Supercomputing Applications (NCSA) and former applications lead for the Blue Waters project, delivered a keynote address in which he discussed the Blue Waters architecture and shared several planned projects for the new supercomputer, a joint effort between NCSA, the University of Illinois, IBM, the Great Lakes Consortium for Petascale Computation, and the National Science Foundation (NSF).

Eighty percent of the Blue Waters resource will be dedicated to NSF awardees through the Petascale Computing Resources Allocation Program or PRAC, Wilhelmson told TG’10 attendees in Pittsburgh, Pa. Each PRAC award identifies a scientific challenge requiring advanced modeling and simulation capabilities that can only be provided by a system that provides sustained performance approaching one petaflop. Awardees receive a $40,000 travel grant to learn about the new supercomputer system and prepare their algorithms to scale to hundreds of thousands of processors/cores. To date, 18 awards have been made and 55 proposals are under review. Approximately 10 new awards are expected.

Some of the first areas of research selected for Blue Waters include:

  • The simulation of stellar weather, including high-resolution turbulence simulations. Simulation will help researchers better understand how convection in the Sun and other stars.
     
  • The study of chromatophores, or cells which are largely responsible for generating skin and eye color in cold-blooded animals. At the bacterial level, this study is expected to assist researchers in better understanding human disease and in new drug development.
     
  • Actions and interaction of quarks, elementary particles and a fundamental constituent of matter. This particle physics project will provide information of value for research in astronomy, physics, meteorology, and other fields.
     
  • The simulation of disease spread and pandemics in very large social networks. The project will model predictions of network behavior among human populations of 300 million or more, and provide guidance for medical emergency preparedness, such as mass vaccinations.
     
  • The formation of the first galaxies. Blue Waters’ massive computer power will allow researchers to simulate large numbers of galaxies with much higher resolution.
     
  • A ‘bio evolution’ project. This effort will focus on how bacteria mutate and how to clean up environmental contamination by developing multi-scale models of bacteria populations.
     
  • Simulating supercell storms and tornadoes. Blue Waters’ resources will be used to carry out simulations of tornadoes embedded in supercell storms with unprecedented detail and accuracy, with up to 8 million times as many grid points compared to what was possible to compute in the 1970s.

Blue Waters is being built from the most advanced computing technologies under development at IBM, including the multicore ‘POWER7’ microprocessor. The system will have more than one petabyte of memory, more than 10 petabytes of disk storage, and eventually up to 500 petabytes of archival storage. It will take up approximately 5,000 square feet of floor space in a new state-of-the-art computer facility at the University of Illinois.

“The concept here is to develop a well-balanced machine both in terms of compute power, memory size, disk/archive storage, and IO capability,” Wilhelmson told TG’10 attendees. “It is one of the things that many organizations struggle with.”

While the numbers behind the data-intensive Blue Waters supercomputer are impressive — its 300,000-plus cores will help the system achieve peak performance of approximately 10 petaflops, or 10 quadrillion calculations per second, and deliver a sustained performance of at least one petaflop on a range of real-world science and engineering applications — Wilhelmson said it is the science and scientific advances that are really important.

“Machines are just technology,” he said. “They live for five years and then they’re gone, replaced by something else. What does not die is the application, because it is developed and used to gain a deeper understanding of the world around us.”

Wilhelmson, an atmospheric scientist at the University of Illinois at Urbana-Champaign, also had some advice for students and young researchers working with TeraGrid, the nation’s largest open-access scientific discovery infrastructure.

“Expect to work in teams,” he said, adding that the days of researchers working alone on a project are over. “Teams and collaborations are crucial to solving interdisciplinary problems and furthering our understanding because the problems are so big and often quite complex.”

Wilhelmson said that today’s scientists must be “nimble and adaptive,” willing to try new things, and “find new ways to deal with the data explosion which we are in part creating.

“We will be able to do things on Blue Waters that I never dreamed about,” he said, adding that “we are now solving problems that we didn’t have enough computational power to solve in the past.”

In conclusion, Wilhelmson stressed the need for funding at adequate levels for applications development and system support, calling it essential to progress and leadership. Yet he expressed doubt about the next frontier: exascale computing, which is a thousand-fold increase over the petascale level.

“I’ll make a claim,” he told the TG’10 audience. “There will be no general purpose exascale machine ever built that anyone can afford to operate, much less buy,” largely because of the massive amount of funding that will be needed, along with the extreme power requirements. Upon reflection, Wilhelmson challenges today’s young computer scientists: “Who will show that this prediction is wrong?”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This