TeraGrid 2010 Keynote: Attendees Peer into Blue Waters

By Jan Zverina

August 16, 2010

NCSA’s Wilhelmson discusses first research projects for supercomputer’s 2011 debut

Blue Waters, expected to be one of the most powerful supercomputers in the world for open scientific research when it comes online next year, is being counted on to help solve some of the world’s most vexing scientific and social challenges, from figuring out how the first galaxies formed to simulating the spread of disease across large populations to better prepare us for such medical emergencies.

Bob WilhelmsonAt this year’s TeraGrid conference, Bob Wilhelmson, recently retired chief science officer of the National Center for Supercomputing Applications (NCSA) and former applications lead for the Blue Waters project, delivered a keynote address in which he discussed the Blue Waters architecture and shared several planned projects for the new supercomputer, a joint effort between NCSA, the University of Illinois, IBM, the Great Lakes Consortium for Petascale Computation, and the National Science Foundation (NSF).

Eighty percent of the Blue Waters resource will be dedicated to NSF awardees through the Petascale Computing Resources Allocation Program or PRAC, Wilhelmson told TG’10 attendees in Pittsburgh, Pa. Each PRAC award identifies a scientific challenge requiring advanced modeling and simulation capabilities that can only be provided by a system that provides sustained performance approaching one petaflop. Awardees receive a $40,000 travel grant to learn about the new supercomputer system and prepare their algorithms to scale to hundreds of thousands of processors/cores. To date, 18 awards have been made and 55 proposals are under review. Approximately 10 new awards are expected.

Some of the first areas of research selected for Blue Waters include:

  • The simulation of stellar weather, including high-resolution turbulence simulations. Simulation will help researchers better understand how convection in the Sun and other stars.
     
  • The study of chromatophores, or cells which are largely responsible for generating skin and eye color in cold-blooded animals. At the bacterial level, this study is expected to assist researchers in better understanding human disease and in new drug development.
     
  • Actions and interaction of quarks, elementary particles and a fundamental constituent of matter. This particle physics project will provide information of value for research in astronomy, physics, meteorology, and other fields.
     
  • The simulation of disease spread and pandemics in very large social networks. The project will model predictions of network behavior among human populations of 300 million or more, and provide guidance for medical emergency preparedness, such as mass vaccinations.
     
  • The formation of the first galaxies. Blue Waters’ massive computer power will allow researchers to simulate large numbers of galaxies with much higher resolution.
     
  • A ‘bio evolution’ project. This effort will focus on how bacteria mutate and how to clean up environmental contamination by developing multi-scale models of bacteria populations.
     
  • Simulating supercell storms and tornadoes. Blue Waters’ resources will be used to carry out simulations of tornadoes embedded in supercell storms with unprecedented detail and accuracy, with up to 8 million times as many grid points compared to what was possible to compute in the 1970s.

Blue Waters is being built from the most advanced computing technologies under development at IBM, including the multicore ‘POWER7’ microprocessor. The system will have more than one petabyte of memory, more than 10 petabytes of disk storage, and eventually up to 500 petabytes of archival storage. It will take up approximately 5,000 square feet of floor space in a new state-of-the-art computer facility at the University of Illinois.

“The concept here is to develop a well-balanced machine both in terms of compute power, memory size, disk/archive storage, and IO capability,” Wilhelmson told TG’10 attendees. “It is one of the things that many organizations struggle with.”

While the numbers behind the data-intensive Blue Waters supercomputer are impressive — its 300,000-plus cores will help the system achieve peak performance of approximately 10 petaflops, or 10 quadrillion calculations per second, and deliver a sustained performance of at least one petaflop on a range of real-world science and engineering applications — Wilhelmson said it is the science and scientific advances that are really important.

“Machines are just technology,” he said. “They live for five years and then they’re gone, replaced by something else. What does not die is the application, because it is developed and used to gain a deeper understanding of the world around us.”

Wilhelmson, an atmospheric scientist at the University of Illinois at Urbana-Champaign, also had some advice for students and young researchers working with TeraGrid, the nation’s largest open-access scientific discovery infrastructure.

“Expect to work in teams,” he said, adding that the days of researchers working alone on a project are over. “Teams and collaborations are crucial to solving interdisciplinary problems and furthering our understanding because the problems are so big and often quite complex.”

Wilhelmson said that today’s scientists must be “nimble and adaptive,” willing to try new things, and “find new ways to deal with the data explosion which we are in part creating.

“We will be able to do things on Blue Waters that I never dreamed about,” he said, adding that “we are now solving problems that we didn’t have enough computational power to solve in the past.”

In conclusion, Wilhelmson stressed the need for funding at adequate levels for applications development and system support, calling it essential to progress and leadership. Yet he expressed doubt about the next frontier: exascale computing, which is a thousand-fold increase over the petascale level.

“I’ll make a claim,” he told the TG’10 audience. “There will be no general purpose exascale machine ever built that anyone can afford to operate, much less buy,” largely because of the massive amount of funding that will be needed, along with the extreme power requirements. Upon reflection, Wilhelmson challenges today’s young computer scientists: “Who will show that this prediction is wrong?”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This