AMD Blazes New Path with Bulldozer

By Michael Feldman

August 24, 2010

Now that AMD has jettisoned its chip production business with the Globalfoundries spinoff, it can concentrate on what it has always done best: microprocessor design. Much of its success early in the decade resulted from outmaneuvering Intel, its much larger rival, in the lucrative x86 server space. With the Opteron CPU, AMD paved the way for the next-generation x86 platform with 64-bit processing, integrated memory controllers, and a NUMA architecture. Now with Bulldozer, AMD’s upcoming x86 core, the chip vendor is once again looking to leapfrog the competition.

Bulldozer represents AMD’s first new x86 core redesign in seven years, according to Dina McKinney, vice president of design engineering at AMD. McKinney briefed reporters and analysts last week on the new architecture, in preparation for a more public unveiling at this week’s Hot Chips conference at Stanford University. The intention, says McKinney, is for this core to “live for a long time.”

AMD is actually talking up its two new core architectures this week, Bobcat and Bulldozer. Bobcat is AMD’s low-power core and is initially being targeted to notebooks and netbooks, where it will compete against Intel’s Atom processor. The Bulldozer architecture will be the basis for Opteron chips and high-end desktop CPUs, where performance and scalability are paramount.

The focus of the Bulldozer design is to optimize thread throughput against die real estate and power consumption. Intel has attacked the issue with HyperThreading, its version of Simultaneous MultiThreading (SMT), where each core can handle two threads with minimal hardware redundancy. Meanwhile, AMD has stuck with the one core per thread model, known as the Chip MultiProcessing (CMP).

In Bulldozer, the company has opted for a sort of hybrid approach where each module consists of two integer schedulers, which appear to the software as two separate cores. Because they appear as individual cores, AMD is counting them as such. For example, a 4-module Bulldozer CPU would be sold as an 8-core processor.

The dual integer schedulers shared a floating point unit, which consists of an FP scheduler that manages two 128-bit multiply and accumulate units. An integer unit can also use the two 128-bit FPU units to schedule 256-bit operations, when extra wide floating point computations are called for. Each Bulldozer integer unit has is own L1 data cache, but they, along with the floating point unit, share an L2 cache. To build a processor, multiple Bulldozer modules are laid out on the chip and they all share an L3 cache, along with an integrated memory controller and a Northbridge controller.

 

 

The whole idea is to strike a balance between dedicated and shared hardware such that those resources most in demand (the integer unit and L1 cache) are duplicated and those in lesser demand (FP unit and L2 cache) are not. (Note that even in technical HPC applications, the integer unit dominates execution cycles.) AMD’s claim is that the Bulldozer design delivers 33 percent more cores and an estimated 50 percent increase in throughput within the same power envelope as the current generation Magny-Cours Opteron.

The first Bulldozer-based CPU will be the Opteron 6000 series “Interlagos” CPU aimed at enterprise and HPC server platforms. Interlagos is a 16-core chip — thus it will be built from 8 Bulldozer modules — and will be the first AMD processor to use the 32nm SOI manufacturing technology.

Interlagos is scheduled to go into production sometime in 2011. It will use the same G34 socket as its Magny-Cours predecessor, so even though the underlying microarchitecture has changed, AMD is promising a plug-in upgrade for the first Bulldozer Opterons. The 4000 series Opterons could swallow Bulldozer technology as well, but there is no such product yet announced for this line.

Bulldozer will also end up in the 8-core Zambezi processor for high-end desktop systems, again in 2011, but following the Interlagos release. McKinney hinted that Bulldozer cores would eventually make their appearance in APU-type (CPU-GPU Fusion) processors and even mobile chips, but presumably such products won’t show up until 2012 and beyond.

Whether the Bulldozer technology ignites a comeback for AMD in the server and workstation arena remains to be seen. The company is not releasing performance or pricing data on future Bulldozer-based processors yet, so there’s no way to gauge their competitiveness against Intel’s Xeon chips.

AMD has been losing market share in this space for years. According to IDC, Intel supplied a whopping 93.5 percent of server processors in the second quarter of 2010, while AMD claims a measly 6.5 percent. Even in HPC, where AMD chips traditionally have had better traction, the numbers aren’t much better. On the latest TOP500 list (June 2010) of supercomputers, Opterons have only a 9.8 percent share, compared to Xeons at 80.2 percent. Certainly AMD has lots of lost ground to make up.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a pres Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have coalesced into a major headache in advanced HPC system desig Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field an Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This