Startup Makes Liquid Cooling an Immersive Experience

By Michael Feldman

August 31, 2010

There’s nothing like a blazing hot summer to focus one’s attention on the best ways to keep cool. That goes for datacenter operators as well, who are equally worried about keeping their servers properly chilled. While there is no shortage of innovative cooling solutions being proffered by various vendors, a new liquid immersion cooling solution from startup Green Revolution Cooling could end up being the best of them all.

The stakes for more efficient datacenter cooling are already high. Power consumption for a traditional air-cooled facility eats up a third to more than a half of the energy cost. Making cooling more efficient leaves more money available for computing, which, after all, is the central purpose of the datacenter. Efficient cooling is an especially important consideration in high performance computing, since this class of users gravitate toward faster and denser (and thus hotter) server configurations. If the setup in the center is not optimal, you end up sacrificing a lot of FLOPS for cooling.

With the increasing density of servers, storage, switches and other equipment, facility managers are taking an extra hard look at liquid cooling. Water-cooled servers have been around for decades, and direct-cooled CPUs are now being offered by a handful of vendors. Submerged liquid cooling, too, has been around since the days of the Cray 2, but this technology may be poised for a big comeback.

Servers Take a Bath

Green Revolution Cooling (GRC), a two year-old company based in Austin, Texas, is offering a general-purpose liquid immersion cooling solution that they introduced at SC09 in Portland last November. It was selected as one of the “Disruptive Technologies of the Year” for the 2009 conference, an award they’ve recaptured for SC10.

In a nutshell, the system consists of a 42U rack enclosure tipped on its back and filled with an inert mineral oil mixture in which you immerse the server hardware. A pump is used to circulate the oil to an external heat exchanger, typically located outside the building.

The big advantage is that, unlike water, the oil formulation is not electrically conductive, but has 1,200 times the heat capacity of air. And since the oil is in direct contact with all the components, it only needs to be cooled down to about 104F (40C) to be effective. (CPUs can operate at 75C and hard drives at 45C.) Unless your datacenter happens to be located in Yuma, Arizona, cooling a liquid to 40C is relatively easy to attain with a simple heat exchanger or cooling tower. The solution is advertised to reduce the cooling energy by 90 percent and cut overall power consumption in the datacenter by up to 45 percent. The pitch is that a single 10kW server rack at 8 cents per kWh will save over $5,000 per year on energy costs alone.

According to Green Revolution co-founder Christiaan Best, basically any piece of datacenter equipment — rackmount server, blade, switch — that adheres to the standard 19-inch form factor can be slid into the GRC enclosure. The only equipment modifications required are the removal of the internal fans (you don’t need air cooling any more) and the sealing of any hard drive units, with an epoxy coating, to make them airtight. Typically this procedure takes a few minutes per server.

Because the GRC enclosure is laid on its back, it does takes up more floor space than a regular vertical rack. But since you no longer need hot aisles, chillers, and CRAC units, there is extra square footage to play with. Also, because there is no need to run cold air beneath the equipment anymore, the raised floor is now superfluous. “Essentially you could run it in a barn,” says Best. “All you need is a level floor.”

If you’re looking for performance, the GRC rack allows you to overclock the processors without worrying about melting the server. An NSF-funded study found that cranking up the clock on an Intel E5520 “Nehalem” CPU inside a GRC-cooled server yielded a 54 percent performance boost on Linpack, while keeping the CPU temperature at 76C. The server cost per gigaflop was reduced by about 50 percent.

It’s not just for overclocking. Theoretically, you could throw almost any sort of artificially dense board — multi-GPUs servers, custom blades with 10 CPUs on the motherboard, etc. — into the oil bath and realize the additional cost benefit of shrinking down your hardware footprint.

One possible roadblock to widespread adoption is the lack of warranty support from the OEMs. Warranties don’t typically allow the customer to take the server apart and dunk it into foreign liquids. According to Best, they’ve been talking with all the major OEMs to get their solution qualified under the original warranties, but currently none have committed to supporting the GRC setup. Since many of the big system vendors have their own liquid cooling solutions they’d like sell, they are likely to be less than enthusiastic to qualify a third-party solution.

In any case, Best says they’ve retained third-party support that will honor the original equipment warranties, so customers can be covered for any mishaps. GRC has logged over a quarter million server hours on their in-house test system and has yet to encounter a failure (with the exception of hard drive mechanical failures). Although there is no data to support it, Best is fairly certain that their solution will extend the life of the servers, given the more stable thermal environment, the lack of vibration from internal fans, and the elimination of oxidation on the electrical contacts.

Looking for a Few Brave Customers

Austin-based Midas Networks, a collocation firm, is the company’s first customer. Midas has purchased four of the GRC racks, and the systems are scheduled to be up and running later this year. Best says they also have a number of other customers in the pipeline, including some with HPC facilities, but no checks are in the bank just yet.

With the exception of Green Revolution itself, the Texas Advanced Computing Center (TACC) has acquired the most experience with the technology. TACC installed a pre-production GRC unit back in April and has been putting the system through its paces for the past five months.

Even in oil-rich Texas, energy is not cheap, so power savings has become a big priority at TACC. “We’re really, really chill-water limited where we are now,” says Dan Stanzione, TACC’s deputy director. According to him, they don’t have the ability to add any more chilled water capacity, but do have plans to expand computing capability over the next several years.

The TACC experiment started with immersing some older 1U servers in the GRC enclosure, and since then they’ve added other equipment including InfiniBand switches, GPU-powered servers, and blades. According to Stanzione, all the hardware has performed flawlessly, with no failures to date. They’ve even overclocked some of the server CPUs by 30 to 40 percent, without incident.

At present they have about 10kW of equipment in the rack, and are using just 250 watts to power the GRC solution. That’s more than a 90 percent reduction when compared to the 3,000 to 4,000 watts they would have consumed with a conventional air-cooled system. Stanzione estimates the total power savings for the whole system (equipment plus cooling) was reduced by 25 to 30 percent. “The overall power consumption has been fantastic,” he says.

The TACC crew is going to continue collecting data with the GRC system for the rest of the year. If everything checks out, Stanzione would like to start putting some production units into the upcoming datacenter buildout. They’re already thinking about loading 30 to 40 kW of compute equipment into a single rack, and GRC cooling would make that level of density quite practical. Further into the future, Stanzione is thinking about the cost savings they could accrue by immersing all 140 racks of the center’s equipment. “I think this has a tremendous amount of potential,” he says.

Barring some unforseen technological breakthrough, datacenter computing is only going to get denser and hotter in the years ahead. And since the cooling capacity of air isn’t going to change, the move to liquid-cooled systems appears all but inevitable. “You may not buy liquid cooling from us,” concludes Best, “but you will buy it from someone.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This