Virtualization is Not Cloud…But Does Make It Shine

By Miha Ahronovitz

August 31, 2010

The reason why the clouds came into being and their functionality created such high demand is because most large IT shops were asking themselves “Why does Google make all the money; why does Yahoo make so much—and why don’t we? Can’t we have, in-house, that same model?”

After all, Google might have JBOD (Just a Bunch of Datacentres), so what magic did they use to deliver us, from behind an opaque wall, away from all the abstraction with transparent service and elasticity?

To get to the heart of those questions, Jonathan Lampe spends some time discussing the concept of elasticity. If you ask me, this is the single most important feature of a cloud and part of what separates it so distinctly from the grid. The grids did not have elasticity–all a grid did was to implement policies in sharing a limited number of resources in a fair way.

This means that if I am small-dog user, I am thrown out from the execution space to a holding queue, each time a very big dog user needs the resources. This also means the quality of service is awful in the grid. It is like taking a shower in an older hotel, when the water is either boiling hot or chilling cold, depending on how many guests are showering in their room at the same time.

Let’s revisit Jonathan Lampe’s view on this in the context of elasticity, when he states: “Elastic architecture” is a concept you will read about more frequently as time goes on. It refers to computer architecture designed such that applications with different roles in different tiers of an application can each intelligently (and elastically) scale up or down to meet processing requirements
.
 Jonathan uses as a reference this 2007 blog that looks back, stating:

A few months ago Amazon announced their new web service called EC2, which stands for Elastic Compute Cloud. The idea is pretty simple and powerful. You use an API call to “create” a server and install your software on it. Everything works like a real server, and if you need more power, you call the API again and request another server. If you no longer need the extra power, you shut the extra servers down (with an API call).  You only pay for the actual time you used each “created” server.  Amazon did not invent the concept, but they did make it trivial to use, and with their reputation on the line, they are committed to make it a reliable and competitive platform.

Elastic computing is the result of recent improvements made in the area of virtualization, which is the execution of multiple operating system entities on a single hardware. Image your desktop at home running Windows at the same time it is running Linux. Desktop virtualization is done in the form of one operating system hosting another (something Mac users are very familiar with running Windows inside OS X). Server virtualization is done by running a light virtualization operating system (usually Linux-based) which does not provide any other functionality besides hosting other platforms. Virtualization has reached a certain maturity lately thanks to significant improvements in hardware, mostly in  built-in CPU support for sharing the same hardware between multiple operating systems. 

This is the most lucid simple story of what is EC2. Amazon already operates the largest online store on earth, so the elasticity was big issue for them before it was an issue for everybody else. It was business first. But the genius of Jeff Bezos made this an exercise in the lateral thinking and considered… Gee, if we created this, what not sell the cycles as already do sell books or TVs?” And it was this superb execution that led to Amazon EC2.

The virtualization was never an end in itself, just the means. It so happened that it was handy. At the beginning, virtualization was weak for production use. This is when VMware and XEN opened the eyes and exclaimed, “wow, the cloud, needs us!”

And so we can conclude that the cloud business model does not necessarily need virtualization. Virtualization was an opportunistic tool. The software virtualization companies must continue to make themselves needed via constant improvement. The cloud needs elasticity and irtualization is part of the game for now.

We have an analyst-supplied historic log of virtualization predictions, summarized from 2006 to 2010. In 2006 no one talked about clouds, but about “the IT consolidation market”. Gartner predicted 50% of the workloads will be virtualized in 2010, but “60% of virtualized servers will be less secure than the physical servers they replace.” Supposedly, the cloud infrastructure will have to compensate this basic flaw the server virtualization has by definition.

No wonder  Tech Target’s number one prediction for virtualization in 2010 is disaster recovery (DR).

“Although virtualization provides a backup of sorts, it is not a foolproof method. If one virtual server goes down, it can take hundreds of virtual machines (VMs) with it — bringing enterprise operations to a screeching halt. Having a solid DR plan in place and examining each aspect will make all the difference.”

The DR function is part of many cloud implementatios. This is why, the software virtualization in the cloud needs assistance from the cloud itself.

What about hardware based virtualization? The newest player is Intel who will offer very fast virtualization extension in hardware  processors. The military used already CPUs made by Intel with embedded virtualization  since 2009. 

The advances being made today by CPU makers and hypervisor developers are helping to define the way for future virtualization platforms. New CPU extensions are not only helping to meet the high-performance requirements of future systems, but they’re also making it easier to implement and support legacy operating systems.

In years to come, implementations such as VT-x and VT-d will play an increasingly important role in virtualized systems as industry adopts these types of implementations as effective hardware assistance standards for future CPU architectures.

The original paper on Intel hardware virtualization was published in 2006. The most recent news on Intel virtualization are summrized here

Intel® Xeon® Processor 5000 Sequence has the virtualization technology in place. Here are the benefits as specified by Intel.

• Enables more operating systems and software to run in today’s virtual environments.

• Developed with virtualization software providers to enable greater functionality and  compatibility compared to non-hardware-assisted virtual environments.

• Get the performance and headroom to improve the average virtualization performance over previous generations of two-processor servers.

We have no official news from software virtualization ISV on how their future release will be optimized for Intel processors, yet the results will be spectacular for the both enterprise and home users.

AMD Virtualization (AMD-V™) Technology is also listed on their website

August 7, 2010, an article from Federal Circle, made the following predictions for 2010 virtualization:

Hardware advancements will simplify and help increase penetration of virtualization. I/O Virtualization and direct device access will be focus areas for this year and specific hardware enhancements will remove storage and network bottlenecks. This will allow increased VM (virtual machine) density and better performance. The improvements will enable virtualization of critical workloads without compromising performance. This would enhance utilization and ensure increased RoI (return on investment) for virtualization investments.

The reason 3PAR is the object of an intense bidding between Hewlett Packard and Dell, is because elastic storage, virtual and scalable in a cloud. They are the first, in their storage hardware software combinations working the wonders.

A laptop from HP or Dell needs to have some minimal but extremely fast flash drives. Large heavy internal hard drives will be a thing of the past. Simply every user can have any storage capacity, virtual and  scalable, in the HP or Dell storage clouds based on 3PAR. HP and Bell can update directly all software on the laptop and make connections to any other cloud.

Once married with hardware, the software virtualization will make itself part of the cloud building structures, paving the road to science-fiction-like technological products
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This