Intel Flexes Parallel Programming Muscles

By Michael Feldman

September 2, 2010

Intel Corp has released Parallel Studio 2011, a set of four tools designed to mainstream software development on multicore x86 architectures. This is the second version of the software development suite, building on top of the original Parallel Studio offering introduced in May 2009. The update folds in a number of parallel programming technologies that the company has acquired or developed independently over the past few years, including the Cilk Arts and RapidMind technologies, and Intel’s own Ct data parallel language framework.

Like its predecessor, Parallel Studio 2011 is available as a set of plug-ins to Microsoft’s Visual Studio. As such, it is aimed at the Windows C/ C++ crowd, but some of the technology will soon migrate into Intel’s purpose-built HPC offerings as well. More about that in a bit.

The new release is designed as a soup to nuts development suite that encompasses the entire programming workflow: design, build, debug, verify and tune. To support that range of capabilities, Intel has brought over the three original tools, Parallel Inspector, Parallel Amplifier, and Parallel Composer; thrown in an additional one, Parallel Advisor; and introduced an integrated multicore programming environment, known as Parallel Building Blocks (PBB).

Looking at the elements inherited from the original suite, Composer is still the central development tool, and includes the compilers and libraries needed for code production. It now also incorporates the aforementioned PBB, which is new for this release. The Amplifier tool is used to find hot spots and make sure application performance scales properly when parallelization is applied. Finally, the Inspector tool performs memory checking and uncovers thread error conditions, specifically, data races and deadlocks.

The most notable new capability of the 2011 offering is wrapped up in Parallel Building Blocks. Prior to this release, Parallel Studio apps could use Intel’s Threading Building Blocks (TBB), OpenMP, or the Windows threading API to parallelize software. In the new release, Intel has retained the TBB framework and added two other parallel frameworks: Cilk Plus and Array Building Blocks (ABB). All three are built on top of top of Microsoft’s Concurrency Runtime, which was introduced with Visual Studio 2010. The runtime acts as a resource manager that glues all these frameworks together so they can play nicely with one another within the same app.

Threading Building Blocks is Intel’s original high-level framework for task parallelism on multicore x86. It was introduced three years ago, and is now considered one of the leading parallel development environments for C/C++. It’s implemented as a C++ template library and is used across many computing segments, including technical computing. To complement TBB, Intel has added Array Building Blocks, another C++ template library, but in this case for data parallelism.

If this sounds a bit like Intel’s Ct (C/C++ for throughput computing), that’s because it essentially is. Intel has folded their Ct language technology, along with the RapidMind technology they acquired a year ago, into ABB. Currently in beta, Intel is planning the full ABB product release for next year.

Cilk Plus is the other programming framework that has been productized for Parallel Studio. It’s sort of the odd one out. The technology was acquired when Intel bought Cilk Arts at about the same time as the RapidMind buy. Cilk, the language, is an extension of C/C++ that includes extra keywords to specify parallelism. Cilk Plus adds C/C++ extensions for array notation and represents a solution that incorporates both task and data parallelism. In this framework, the source code is statically compiled (which differentiates it from the more dynamic runtime implementations of TBB and ABB), making it the first choice if lower runtime overhead and a less intrusive coding model is preferred.

Finally, the new Advisor tool helps programmers expedite the design phase of parallel programming. It has been available in beta (as Parallel Advisor Lite) since last May, but is now ready for prime time. Its central purpose is to guide developers through a process that helps them transition their sequential codes into parallel ones.

Each tool can be purchased separately for $399 or bought as a complete package for $799. At that price, the package deal obviously makes sense if you buy two or more tools. And since Composer, which contains the parallel compilers and libraries, is mandatory for code development, once you opt for an additional tool, you might as well take the whole package.

Although Parallel Studio is targeted to C/C++ developers on the Windows client, some of the technology will end up in Intel’s HPC cluster toolset as well. According to Bill Savage, Intel’s vice president and general manager of the General Products Division, Software and Services Group, the Parallel Building Blocks programming frameworks, in particular, will be integrated into Intel’s compilers and runtime libraries aimed at high performance computing applications . The idea is to be able to use the PBB technology for programming the multicore nodes within a distributed MPI-type application. That will entail making these frameworks Fortran- and Linux-friendly, and at some point, adding compiler support for Intel’s Many Integrated Core (MIC), aka Knights Ferry, architecture. Savage said some of this technology will show up in Intel’s HPC portfolio later this year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Leading Solution Providers

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This