SDSC Puts Data at Center Stage

By Michael Feldman

September 7, 2010

The naming of Michael Norman as director of the San Diego Supercomputer Center (SDSC) last week was long overdue. SDSC has been without an official director for more than 14 months, with Norman filling the spot as the interim head since last July. The appointment could mark something of a comeback for the center, which has not only gone director-less during this time, but has been operating without a high-end supercomputer as well.

DataStar, an aged 15-teraflop IBM P690 system was retired in October of 2008 and the center’s relatively small Blue Gene/L machine was mothballed in June 2009. But Trestles, a new 100-teraflop supercomputer funded by the NSF, is scheduled to be up and running before the end of the year. And with the addition of Gordon, a 245-teraflop supercomputer slated for deployment in mid-2011, SDSC will again be a relatively FLOPS-happy place.

You might say that our FLOPS profile looked like the Dow Jones,” laughed Norman. “It really swooned in 2008 and 2009. With the Trestles system coming at the end of 2010, we’ll be back on the board.”

A Little History

Norman, a computational astrophysicist, got his start at Lawrence Livermore in the 1970s, where he was able to combine his love of astronomy (his major at Caltech) with his interest in all things computational. “And then basically, I was a gypsy, going after supercomputer cycles where ever I could find them,” said Norman.

After his stint at Livermore, Norman did a four-year tour (1980 – 1984) at the Max Planck institute for Astrophysics, owners of the first Cray 1 system in Western Europe. It was during his time at Max Planck when he collaborated heavily with Larry Smarr, currently UC San Diego’s director of Calit2.

“I have worked closely with Mike for over 30 years, since he was a grad student at Livermore,” said Smarr. “He brings a wealth of experience from working at multiple national and international supercomputer centers, as well as being a hands-on pioneer in computational astrophysics and cosmology.”

It was also during this period at Max Planck that he and Smarr conceived of the idea of the National Center for Supercomputing Applications (NCSA). Two years after Norman had left the the institute, NCSA was born. But in the interim Norman went to Los Alamos to work as a staff scientist, before rejoining Smarr at NCSA in 1986. He stayed there for 14 years, before coming to San Diego.

There, he got involved with SDSC, first as a researcher from the UC San Diego physics department, then as a member of the center’s Executive Committee. Toward the end of 2007, Norman jumped into the NSF funding fray to help SDSC win one of agency’s Track 2 supercomputer procurements. The first attempt was not successful, but the second one was, resulting in the award for the Gordon system, with Norman as the principle investigator. In the summer of 2009 Norman became the interim director of the center after Fran Berman relinquished her directorship, moving to Rensselaer Polytechnic Institute as the VP of Research.

Data-Centric Supercomputing

Norman’s ascendance at SDSC ratifies the center’s new focus on data-intensive supercomputing. He, more than anyone, wanted to make San Diego a place for HPC and HPD (high-performance data), a term that he coined to draw attention to the data-centric model. The idea is to support the whole scientific enterprise, and that requires a more highly integrated storage infrastructure supporting the supercomputers.

“There are these two cultures: the HPC culture and the culture of data-intensive science, or fourth paradigm, whatever you want to call it,” explained Norman. “They seem to be living in different worlds. I’m hoping to bring them together at SDSC.”

Part of that goal will be served by the upcoming Gordon supercomputer, which will feature a quarter of a petabyte of flash memory and virtual shared memory software. At 245 teraflops, the machine delivers only moderate performance by today’s elite supercomputing standards. But a lot of today’s applications are I/O bound, rather than compute bound, and would really prefer to have their big datasets sitting in main memory. Since RAM is rather expensive, flash is turning out to be the next best thing. Because of its unique memory architecture, Gordon is expected to do exceeding well at dealing with terascale-sized databases.

The driver for all this is the so-called “data deluge,” which is flowing across multiple disciplines — in traditional technical computing areas such as physics, astronomy engineering, bioinformatics, and medicine, as well as in less traditional realms, such as social sciences, arts, and economics.

Terabyte streams coming from ocean observing sensors, astronomical CCD cameras, and genome sequencers are just a few examples of how data is outrunning the computing infrastructure. Some of these, like the astronomical data streams, can require their own dedicated supercomputer.

The problem is even more acute for genome sequencers. Genome biologists are accustomed to doing their work on a workstations, because that used to be perfectly adequate. But the throughput on these machines has increased so rapidly that sequencers have gone from generating gigabytes to terabytes in just a couple of years. Even bigger improvements on the horizon. “They’re really at sea right now,” said Norman, “and they’re realizing they can’t do this work in their labs anymore.”

The centerpiece of the data-intensive remodel at the SDSC will be something called Data Oasis, a very large scalable file store designed to serve multiple HPC clusters as well as data-intensive machines. Basically it’s an extensible disk farm that will have high connectivity through a very large 10 gigabit switch. From Norman’s perspective, this basically turns the datacenter inside out, with the compute machinery and data generators at the periphery and the data storage in the center.

Industry Partner Program Reboot

Once the new infrastructure gets in place, Norman hopes to revive the center’s industry partnership program. Since retiring their capacity supercomputers over the last couple of years, SDSC hasn’t been able to attract a lot of commercial collaborators. After DataStar was switched off, the center used internal funds to buy Triton, a 20-teraflop Appro cluster. According to Norman, they garnered a few industrial partners with that system, but it really doesn’t have the capacity to support a large program.

The Trestles supercomputer, true to its name, will act as bridge system, until the larger Gordon machine is installed next year. (Trestles, by the way, is also a the name of a famous surf break in San Diego.) Shell Oil is very interested in the Gordon architecture, said Norman. Currently, the oil company is employing Dash, a smaller flash memory-accelerated prototype of Gordon, for an undisclosed project, and they are hoping to grow that work once its more capable successor comes online.

According to Norman, they’re also active cultivating the biomedical informatics business, starting with work at the local USCD medical center. They intend to tap faculty working at the university’s School of Medicine to help build up some of this expertise, with the hope that this work could spill into commercial relationships.

Boutique Funding

With it’s data-centric focus, SDSC has chosen not to be part of the latest petaflop-to-exaflop race. While that gives the center an interesting niche, it’s generally at odds with the funding model the NSF uses to fund supercomputing nowadays. Tighter budgets have convinced the agency to spread the money in a more piecemeal way. So you might get money for a supercomputer, but not for the data store or the network infrastructure that’s needed by the whole facility. “In the old days when we had true supercomputer center funding, there was enough money to create an integrated environment,” explained Norman.

In that sense, the centers are no longer funded as such. They’re funded as places where the agency can plop down a resource. From Norman’s perspective, that’s not a workable long-term strategy for supercomputing centers. “It’s possible we’ll get back to a more sustainable model,” he said. “I certainly hope so.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This