Say Hello to the New ADIOS

By Gregory Scott Jones

September 12, 2010

Updated I/O performance library improves ease of use and achieves even better performance

Big machines are one thing. Taking advantage of their full potential is quite another. Application performance has long been trailing hardware as supercomputers have sought, entered, and now surpassed petaflop performance.

One of the factors commonly affecting application performance is input/output (I/O). Researchers regularly find themselves having to choose between the performance of their applications and the amount and quality of the data they write.

It’s a problem familiar to the Oak Ridge Leadership Computing Facility’s (OLCF’s) Scott Klasky from his early years as a researcher with a team from Princeton Plasma Physics Laboratory using the Gyrokinetic Toroidal Code.

“We looked at the performance of how often we would like to write, and we were spending over 30 percent of the time writing the analysis files in a very popular file format. Thirty percent of all your computational time writing data to files is too much,” said Klasky. “The scientists eventually decided that unless it was a run that we definitely wanted to get some visualization out of, we weren’t going to write those because we were wasting our valuable computing time doing this.”

Klasky, along with a team of researchers (Qing Liu, Norbert Podhorszki, Jay Lofstead, Hasan Abbasi, Ron Oldfield, Matt Wolf, Fang Zheng, Ciprian Docan, Manish Parashar, Weikuan Yu, Yuan Tian, Nagiza Samatova, Sriram Lakshminarasimh, Todd Kordenbrock, and others) from Georgia Tech, the OLCF, Rutgers University, and Sandia National Laboratories are the developers of ADIOS, an open-source middleware with the primary goal of making the process of getting information in and out of a supercomputer easier and more effective.

Last week the team released ADIOS 1.2, the latest incarnation of one of computational science’s most effective I/O tools. So far ADIOS has helped researchers make huge strides in fusion, astrophysics and combustion. The new version features some interesting improvements that will doubtless aid researchers in taking full advantage of leading supercomputing platforms.

For starters, previous versions of ADIOS had users construct an external XML file that allowed them to organize their simulation variables into distinct groups and add important metadata to their output. With the new application programming interface (API), which allows for interaction between different software packages, users can now place the APIs directly into their code and interactively construct new variables during run time. This was especially important for adaptive mesh refinement (AMR) codes, such as Chombo, that can alter the variables placed on disk during run time. This new API makes ADIOS much more flexible and allows researchers to choose between defining the output in an external file for maximum flexibility or in their codes.

ADIOS also features a custom I/O method that writes data to subfiles and aggregates it into larger pieces for maximum performance on the leadership-class systems. This method has been shown to get near peak I/O performance for many codes, particularly S3D, on the Cray XT5 and Cray XT4 at the OLCF and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center.

“We are now able to speed up applications such as S3D to near-peak I/O bandwidth through simple and easy-to-use ADIOS APIs,” said Qing Liu, a member of the ADIOS team at the OLCF. “We are also able to speed up S3D by a factor of more than 15. This is achieved by intelligently aggregating and writing data to storage targets in ADIOS.”

Now users who run on large systems can switch from running on P-processors and writing to P-files — or one file or M-files, transparently. ADIOS users can switch to the best method for individual systems, including the IBM Blue Gene/P at Argonne National Laboratory, where PhD student Yuan Tian, along with her advisor Weikuan Yu at Auburn University, has created a custom method to write more efficiently with ADIOS.

Version 1.2 also features further support for self-describing data in the output. Users can now write more statistics into their data and have more flexibility in their output. For example, users can automatically retrieve the average value, minimum, maximum, and standard deviation for all arrays at negligible computational cost. This feature allows users to take large files (terabytes) and automatically determine these parameters in less than 2 seconds when listing the contents of the data. Furthermore, users can get these statistics for each independent time step in the output.

Finally, version 1.2 features some new asynchronous transport methods, allowing even faster I/O. The trick is scheduling. I/O uses the network bandwidth, and by taking advantage of the downtime during communication between processors, researchers “can essentially get I/O for free,” said Klasky.

For example, both the DataTap and the Network Scalable Service Interface (NSSI) methods, from Georgia Tech and Sandia Labs respectively, send data to a user defined set of nodes (a staging area) and writes the data from these nodes, reducing the performance linkage between the file system and the application. Furthermore, the DataSpace method from Rutgers creates a PGAS environment in the staging area so that independently compiled codes with ADIOS can be used as services to efficiently couple them together.

“The focus for this release is broader compatibility and user convenience. The introduction of the API calls to replace the XML file addresses long-standing requests from a small but vocal part of our user community,” said team member Jay Lofstead. “The AMR-focused enhancements broaden the classes of application that can use ADIOS while maintaining 100 percent backward compatibility. Some additional changes smooth the user experience.”

Taken separately, all of ADIOS’s individual improvements represent significant advances toward more efficient simulations. Taken together, they embody a major innovation in the way computational science will be conducted.

“Working with Scott Klasky and his team has moved our research and our software, such as DataTap and Data Staging, from being interesting research prototypes to becoming artifacts that address the real needs of petascale simulations,” said Georgia Tech team member Karsten Schwan. “By then also interacting with the fusion, astrophysics and combustion modeling communities, we have not only found ways to alleviate their problems with I/O at scale, but we have also gained valuable information about ways to better organize data and quickly analyze it to help scientists understand the behavior of their petascale codes and gain the scientific insights they seek.”

There are few foreseeable limits to ADIOS’s potential. As it is expanded to additional platforms, simulating big science will become correspondingly simpler, allowing researchers to concentrate more on their results than the technical aspects of their simulations. And as high-performance computing becomes an increasingly powerful research tool, there will be no shortage of grateful scientists.

For more information on ADIOS and/or to download the source, check out the project’s Web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This