Say Hello to the New ADIOS

By Gregory Scott Jones

September 12, 2010

Updated I/O performance library improves ease of use and achieves even better performance

Big machines are one thing. Taking advantage of their full potential is quite another. Application performance has long been trailing hardware as supercomputers have sought, entered, and now surpassed petaflop performance.

One of the factors commonly affecting application performance is input/output (I/O). Researchers regularly find themselves having to choose between the performance of their applications and the amount and quality of the data they write.

It’s a problem familiar to the Oak Ridge Leadership Computing Facility’s (OLCF’s) Scott Klasky from his early years as a researcher with a team from Princeton Plasma Physics Laboratory using the Gyrokinetic Toroidal Code.

“We looked at the performance of how often we would like to write, and we were spending over 30 percent of the time writing the analysis files in a very popular file format. Thirty percent of all your computational time writing data to files is too much,” said Klasky. “The scientists eventually decided that unless it was a run that we definitely wanted to get some visualization out of, we weren’t going to write those because we were wasting our valuable computing time doing this.”

Klasky, along with a team of researchers (Qing Liu, Norbert Podhorszki, Jay Lofstead, Hasan Abbasi, Ron Oldfield, Matt Wolf, Fang Zheng, Ciprian Docan, Manish Parashar, Weikuan Yu, Yuan Tian, Nagiza Samatova, Sriram Lakshminarasimh, Todd Kordenbrock, and others) from Georgia Tech, the OLCF, Rutgers University, and Sandia National Laboratories are the developers of ADIOS, an open-source middleware with the primary goal of making the process of getting information in and out of a supercomputer easier and more effective.

Last week the team released ADIOS 1.2, the latest incarnation of one of computational science’s most effective I/O tools. So far ADIOS has helped researchers make huge strides in fusion, astrophysics and combustion. The new version features some interesting improvements that will doubtless aid researchers in taking full advantage of leading supercomputing platforms.

For starters, previous versions of ADIOS had users construct an external XML file that allowed them to organize their simulation variables into distinct groups and add important metadata to their output. With the new application programming interface (API), which allows for interaction between different software packages, users can now place the APIs directly into their code and interactively construct new variables during run time. This was especially important for adaptive mesh refinement (AMR) codes, such as Chombo, that can alter the variables placed on disk during run time. This new API makes ADIOS much more flexible and allows researchers to choose between defining the output in an external file for maximum flexibility or in their codes.

ADIOS also features a custom I/O method that writes data to subfiles and aggregates it into larger pieces for maximum performance on the leadership-class systems. This method has been shown to get near peak I/O performance for many codes, particularly S3D, on the Cray XT5 and Cray XT4 at the OLCF and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center.

“We are now able to speed up applications such as S3D to near-peak I/O bandwidth through simple and easy-to-use ADIOS APIs,” said Qing Liu, a member of the ADIOS team at the OLCF. “We are also able to speed up S3D by a factor of more than 15. This is achieved by intelligently aggregating and writing data to storage targets in ADIOS.”

Now users who run on large systems can switch from running on P-processors and writing to P-files — or one file or M-files, transparently. ADIOS users can switch to the best method for individual systems, including the IBM Blue Gene/P at Argonne National Laboratory, where PhD student Yuan Tian, along with her advisor Weikuan Yu at Auburn University, has created a custom method to write more efficiently with ADIOS.

Version 1.2 also features further support for self-describing data in the output. Users can now write more statistics into their data and have more flexibility in their output. For example, users can automatically retrieve the average value, minimum, maximum, and standard deviation for all arrays at negligible computational cost. This feature allows users to take large files (terabytes) and automatically determine these parameters in less than 2 seconds when listing the contents of the data. Furthermore, users can get these statistics for each independent time step in the output.

Finally, version 1.2 features some new asynchronous transport methods, allowing even faster I/O. The trick is scheduling. I/O uses the network bandwidth, and by taking advantage of the downtime during communication between processors, researchers “can essentially get I/O for free,” said Klasky.

For example, both the DataTap and the Network Scalable Service Interface (NSSI) methods, from Georgia Tech and Sandia Labs respectively, send data to a user defined set of nodes (a staging area) and writes the data from these nodes, reducing the performance linkage between the file system and the application. Furthermore, the DataSpace method from Rutgers creates a PGAS environment in the staging area so that independently compiled codes with ADIOS can be used as services to efficiently couple them together.

“The focus for this release is broader compatibility and user convenience. The introduction of the API calls to replace the XML file addresses long-standing requests from a small but vocal part of our user community,” said team member Jay Lofstead. “The AMR-focused enhancements broaden the classes of application that can use ADIOS while maintaining 100 percent backward compatibility. Some additional changes smooth the user experience.”

Taken separately, all of ADIOS’s individual improvements represent significant advances toward more efficient simulations. Taken together, they embody a major innovation in the way computational science will be conducted.

“Working with Scott Klasky and his team has moved our research and our software, such as DataTap and Data Staging, from being interesting research prototypes to becoming artifacts that address the real needs of petascale simulations,” said Georgia Tech team member Karsten Schwan. “By then also interacting with the fusion, astrophysics and combustion modeling communities, we have not only found ways to alleviate their problems with I/O at scale, but we have also gained valuable information about ways to better organize data and quickly analyze it to help scientists understand the behavior of their petascale codes and gain the scientific insights they seek.”

There are few foreseeable limits to ADIOS’s potential. As it is expanded to additional platforms, simulating big science will become correspondingly simpler, allowing researchers to concentrate more on their results than the technical aspects of their simulations. And as high-performance computing becomes an increasingly powerful research tool, there will be no shortage of grateful scientists.

For more information on ADIOS and/or to download the source, check out the project’s Web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This