Say Hello to the New ADIOS

By Gregory Scott Jones

September 12, 2010

Updated I/O performance library improves ease of use and achieves even better performance

Big machines are one thing. Taking advantage of their full potential is quite another. Application performance has long been trailing hardware as supercomputers have sought, entered, and now surpassed petaflop performance.

One of the factors commonly affecting application performance is input/output (I/O). Researchers regularly find themselves having to choose between the performance of their applications and the amount and quality of the data they write.

It’s a problem familiar to the Oak Ridge Leadership Computing Facility’s (OLCF’s) Scott Klasky from his early years as a researcher with a team from Princeton Plasma Physics Laboratory using the Gyrokinetic Toroidal Code.

“We looked at the performance of how often we would like to write, and we were spending over 30 percent of the time writing the analysis files in a very popular file format. Thirty percent of all your computational time writing data to files is too much,” said Klasky. “The scientists eventually decided that unless it was a run that we definitely wanted to get some visualization out of, we weren’t going to write those because we were wasting our valuable computing time doing this.”

Klasky, along with a team of researchers (Qing Liu, Norbert Podhorszki, Jay Lofstead, Hasan Abbasi, Ron Oldfield, Matt Wolf, Fang Zheng, Ciprian Docan, Manish Parashar, Weikuan Yu, Yuan Tian, Nagiza Samatova, Sriram Lakshminarasimh, Todd Kordenbrock, and others) from Georgia Tech, the OLCF, Rutgers University, and Sandia National Laboratories are the developers of ADIOS, an open-source middleware with the primary goal of making the process of getting information in and out of a supercomputer easier and more effective.

Last week the team released ADIOS 1.2, the latest incarnation of one of computational science’s most effective I/O tools. So far ADIOS has helped researchers make huge strides in fusion, astrophysics and combustion. The new version features some interesting improvements that will doubtless aid researchers in taking full advantage of leading supercomputing platforms.

For starters, previous versions of ADIOS had users construct an external XML file that allowed them to organize their simulation variables into distinct groups and add important metadata to their output. With the new application programming interface (API), which allows for interaction between different software packages, users can now place the APIs directly into their code and interactively construct new variables during run time. This was especially important for adaptive mesh refinement (AMR) codes, such as Chombo, that can alter the variables placed on disk during run time. This new API makes ADIOS much more flexible and allows researchers to choose between defining the output in an external file for maximum flexibility or in their codes.

ADIOS also features a custom I/O method that writes data to subfiles and aggregates it into larger pieces for maximum performance on the leadership-class systems. This method has been shown to get near peak I/O performance for many codes, particularly S3D, on the Cray XT5 and Cray XT4 at the OLCF and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center.

“We are now able to speed up applications such as S3D to near-peak I/O bandwidth through simple and easy-to-use ADIOS APIs,” said Qing Liu, a member of the ADIOS team at the OLCF. “We are also able to speed up S3D by a factor of more than 15. This is achieved by intelligently aggregating and writing data to storage targets in ADIOS.”

Now users who run on large systems can switch from running on P-processors and writing to P-files — or one file or M-files, transparently. ADIOS users can switch to the best method for individual systems, including the IBM Blue Gene/P at Argonne National Laboratory, where PhD student Yuan Tian, along with her advisor Weikuan Yu at Auburn University, has created a custom method to write more efficiently with ADIOS.

Version 1.2 also features further support for self-describing data in the output. Users can now write more statistics into their data and have more flexibility in their output. For example, users can automatically retrieve the average value, minimum, maximum, and standard deviation for all arrays at negligible computational cost. This feature allows users to take large files (terabytes) and automatically determine these parameters in less than 2 seconds when listing the contents of the data. Furthermore, users can get these statistics for each independent time step in the output.

Finally, version 1.2 features some new asynchronous transport methods, allowing even faster I/O. The trick is scheduling. I/O uses the network bandwidth, and by taking advantage of the downtime during communication between processors, researchers “can essentially get I/O for free,” said Klasky.

For example, both the DataTap and the Network Scalable Service Interface (NSSI) methods, from Georgia Tech and Sandia Labs respectively, send data to a user defined set of nodes (a staging area) and writes the data from these nodes, reducing the performance linkage between the file system and the application. Furthermore, the DataSpace method from Rutgers creates a PGAS environment in the staging area so that independently compiled codes with ADIOS can be used as services to efficiently couple them together.

“The focus for this release is broader compatibility and user convenience. The introduction of the API calls to replace the XML file addresses long-standing requests from a small but vocal part of our user community,” said team member Jay Lofstead. “The AMR-focused enhancements broaden the classes of application that can use ADIOS while maintaining 100 percent backward compatibility. Some additional changes smooth the user experience.”

Taken separately, all of ADIOS’s individual improvements represent significant advances toward more efficient simulations. Taken together, they embody a major innovation in the way computational science will be conducted.

“Working with Scott Klasky and his team has moved our research and our software, such as DataTap and Data Staging, from being interesting research prototypes to becoming artifacts that address the real needs of petascale simulations,” said Georgia Tech team member Karsten Schwan. “By then also interacting with the fusion, astrophysics and combustion modeling communities, we have not only found ways to alleviate their problems with I/O at scale, but we have also gained valuable information about ways to better organize data and quickly analyze it to help scientists understand the behavior of their petascale codes and gain the scientific insights they seek.”

There are few foreseeable limits to ADIOS’s potential. As it is expanded to additional platforms, simulating big science will become correspondingly simpler, allowing researchers to concentrate more on their results than the technical aspects of their simulations. And as high-performance computing becomes an increasingly powerful research tool, there will be no shortage of grateful scientists.

For more information on ADIOS and/or to download the source, check out the project’s Web page.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This