Swift Before, Swifter Now: HPC Accelerates SMB’s Business

By Nicole Hemsoth

September 13, 2010

Council on Competitiveness studies have demonstrated that small and medium-size businesses (SMBs) face major hurdles moving to HPC. Auto/aero supplier Swift Engineering proves how worthwhile the journey can be. HPCwire talked with Swift chief scientist Mark Page about the transition and its benefits.

HPCwire: What exactly does Swift Engineering do?

Mark Page: We specialize in high-performance aerodynamic vehicles, including race cars and UAVs [Unmanned Aerial Vehicles]. We also work with sophisticated composite structures for companies like Northrop Grumman, where we build a van-sized radome for the Global Hawk UAV, and ventral fins. On most projects we design complete vehicles, UAV’s, race cars, or jets. So we don’t just build these things. We do the configuration design and synthesis to the customer’s specs.

HPCwire: Do you use a mix of physical and virtual prototyping?

Page: Swift uses both physical wind tunnels and virtual modeling with CFD. Each of these methods has its advantages, depending on what you’re trying to do. With virtual modeling of a design, for example, you don’t have to deal with the artificial effects of wind tunnel walls, model supports, or humidity changes. Wind tunnel testing has been a huge part of what we do, but each year more of the work moves to HPC. We see this trend not just at Swift, but everywhere. Wind tunnel testing is still best for some things, such as “mapping,” but CFD can’t be beaten for others.

HPCwire: Who are your principle customers?

Page: Much of our business is with the big OEMs, companies like Toyota, Northrop Grumman and Boeing. Some other customers need access to our wind tunnel and our other resources. They have a concept, and they use us to make the prototype. We help them design it, build the model, test it in our wind tunnel, and finally, we build the prototype. They may have an idea for an airplane with certain specs, but they may not know how to design composites, or how to interpret the FAA regulations, or they might not have the CAD software, etc. They want to build interest with a customer for their concept, and we help them.

Toyota came to us to help them get into NASCAR. For two-and-a-half years, we secretly developed the aerodynamic shape of the Tundra truck and then helped with the Camry for NASCAR. Northrop Grumman came to us to develop and build the BAT UAV, which we now manufacture and develop further. Eclipse Aviation asked us to secretly design a new, light business jet for them. We designed and built it in 200 days, that’s from design to first flight. Eclipse provided us with sub-systems and we did the aerodynamics, wind tunnel testing, and built the airplane.

HPCwire: How closely related are the work you do for racing cars and your other work, such as for UAVs? Do they share many of the same applications and methodologies?

Page: The technical disciplines are very similar, so our technical team supports both types of work. Things begin to get specialized more at the architecting and program management levels. The design criteria and certifying agencies are very different, so we need specialty experts there. But from the standpoint of the basic disciplines, such as structures, aerodynamics and electronics, it’s very similar.

HPCwire: What advantages do you have over a large OEM for doing this work? In other words, why would customers come to you for this?

Page: Northrop Grumman has world-class experts in every field, but the company is not organized for quick turnaround. We design a race car in one season that would take a big OEM four years, and there are cost benefits associated with our approach. But we make prototypes, not certified production vehicles like the ones Northrop and others build. That’s why it takes four years.

HPCwire: How long has Swift Engineering been using HPC servers and software?

Page: We’ve been running CFD on a small cluster since 1997. We upgraded to a true HPC system in May 2010. It’s 10 to 100 times more powerful than the small cluster, depending on the application.

HPCwire: Not long ago, HPC systems were too expensive and hard to use for most SMBs. How do you think this has changed?

Page: You could build a high performance platform with off-the-shelf hardware, but then you’d need intensive IT activity to maintain and upgrade that system. People are moving away from building clusters out of PCs and servers. Also, advances in cluster management software have made things much easier. Cost-effective, powerful processors and other hardware and software components have been packaged together by places liked Cray, so we don’t need our own IT person to maintain the system. And ISVs design their software to run on these systems, so we don’t need to make mods as we used to do to run the apps on the earlier cluster hardware.

HPCwire: Which HPC system do you use, and why did you choose it?

Page: We use the Cray CX1000, which is a rack-mounted system based on Intel Xeon processors. Cray has a proven HPC track record. We wanted that kind of support. As I said, we used a home-made cluster for years and said, “No more.” The CX1000 is also designed to be expanded, so we have headroom for growth. Home-built clusters can also be expanded, but the components quickly become obsolete and then you have to figure what to do next. We’re not in that business. We wanted an expert to do that for us.

We also have a Cray CX1. That unit has a visualization blade and a data storage blade. It has 12-core processors with 48GB of RAM. The storage blade has dual quad-core processors and 24GB of RAM. We use the CX1 for grid generation and for pre-and post-processing and storage.

Our big machine, the CX1000, has 18 nodes of Westmere dual quad-cores for the compute side, with 24GB of RAM each node. That’s a lot of RAM.

HPCwire: What about software? What OS and applications do you use?

Page: Our OS is CentOS 5.4, and our cluster management software is Platform Cluster Manager. The main app we use for grid generation is MIME from Metacomp. We also use CFD++ from Metacomp. We’ve started using Sculptor morphing software from Optimal Solutions for 3D design. It gives us a way to deform shapes smoothly, without re-gridding. A few years back Formula-1 cars became ultra-swoopy, and this was the influence of Sculptor. We have also looked at Pointwise for CFD grid generation. On the structures side, we use RADIOSS, Altair’s Optistruct, and NASTRAN.

HPCwire: What benefits are you seeing from using the HPC system? Is it enabling you to be more innovative and competitive? What can you do that you couldn’t do before?

Page: The Cray CX1000 has totally transformed our processes. It’s been the biggest single step forward since I’ve been at Swift. We now explore aerodynamic design spaces 10 to 100 times faster than before, and ask questions we never thought of asking at the design stage. We’re getting good answers, so the line of users with questions is long.

HPCwire: What was your design workflow like before you started using HPC, and how has this changed?

Page: It’s completely changed. In the old days, we had a designer for the wind tunnel model, and then we went to a specialized machinist to make the parts, and then to the wind tunnel to help us decide which way to go. Now we only have to worry about the outer structure, and we can skip the fabrication and test. Instead of using a team of mechanics in series, we have the aerodynamics guy hand off to the surfacing guy, and then it goes directly to our CFD guy. We’ve cut three-quarters of the people out of the loop. The turnaround time is 5 to 10 times faster.

With HPC, as with wind tunnel testing, you need to build a formal process to queue up the work, because the demand to use the system is great. We have had to make process changes to satisfy all of our internal customers.

HPCwire: What has the move to HPC done for your business?

Page: It definitely improves our ability to get business. The Cray has an iconic name and being able to say, “We have a Cray,” really impresses people. Much of our business is referral.

HPCwire: How difficult was the transition to HPC for Swift Engineering? Were there any surprises?

Page: In general, it was not difficult. It takes some time to prep the building for installation, especially the cooling to accept this more powerful machine.

HPCwire: What advice would you give to other small and medium-size organizations that are contemplating a move to HPC?

Page: Our transition wasn’t difficult because my colleague Dr. Winkler spent time assessing the alternatives. Because the system arrived as a pre-integrated package, all the interfaces were handled. With our home-brewed cluster we had to spend many months getting it to work at all. It’s worth taking the time to figure out what will be most cost-effective for you. You need to ask what processor speed you need, because more-powerful processors cost more. The key is the CFD or other software you need to use. This will determine which way to go. You need to understand the software licensing model. Some ISVs charge by the core, and fewer, more-powerful cores could save money. It’s also good to benchmark software packages to see which software scales well.

And don’t forget the infrastructure costs, which in our experience are 15 to 25 percent of the machine cost. We chose to have a dedicated room with dedicated power, surge protection, and an uninterruptible power supply. These cost money to install. We also needed to install a dedicated cooling system.

HPCwire: Was it worth the trouble?

Page: Absolutely. We increased our capability 10 to 100 times, depending on the problem. The machine’s fully booked around the clock. We aren’t just doing the same things faster. We’re doing way more things we haven’t had the ability to do before. So, our costs are 20-30 percent less than before, and we’re doing three to four times more work.

But it’s more than that. You also get to understand the problems much better. Our productivity in aero-physics has increased because everyone now has their own little digital wind tunnel. We’re doing Reynolds number surveys on our UAVs, correlation exercises with the broader industry, time-dependent rotating reference systems for windmills, and a lot more new things.

HPCwire: Is there anything important we haven’t covered yet?

Page: Yes. As with anything that provides an answer, the user is ultimately responsible for the veracity of the solution. The hardware and software vendors are giving us these awesome resources. You always want to do a truth test when you go into a new area. Find a known answer to calibrate against, because you’re doing pioneering work and you will get an answer even if you, as a user, have made a colossal error. You need to be on top of this.

The software vendors have made huge strides in visualizing input and output. The next step would be for them to create a dashboard that does a visual play-back of the inputs against simple standards. For example, if all the inputs are A-OK except for viscosity, there may be no alert that such a combination can’t exist in our atmosphere. This is challenging because sometimes you’re looking at flow in a pump where the pressures are way beyond atmospheric, or maybe the flow isn’t even air. But for each fluid state there are combinations that are “normal.” The dashboard would need to incorporate a lot of intelligence and best practices.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This