Intel, AMD Gear Up for 2011 Server Chip Battle

By Michael Feldman

September 16, 2010

Although 2010 still has a few months left to go, the competition in the x86 server processor arena for 2011 is already setting up to be a knock-down, drag-out fight. Both AMD and Intel are introducing new high-end server chips with revamped microarchitectures next year, and, at the same time, upping the core counts over their previous generation products. At a time when AMD is looking to make up lost market share, Intel is hoping to expand its dominance in the x86 server market.

This week at the Intel Developer Forum (IDF) extravaganza in San Francisco, Intel had the opportunity to provide some more tidbits about its next generation “Sandy Bridge” server processors, but chose to concentrate mostly on the client-side products and applications. This was a practical choice, given that the chipmaker is planning to launch two of its most interesting products later this year: the new “Tunnel Creek,” Atom E600 SoC processors for embedded apps and the first “Sandy Bridge” processors with integrated graphics for PCs.

Sandy Bridge, which represents the 32nm-based microarchitecture upgrade from Nehalem, will end up in Xeon server parts as well, but these chips are not expected to ship until well into 2011. They’ll be meeting AMD’s 32nm “Interlagos” Opteron CPUs in roughly the same timeframe.

The first Sandy Bridge chips, which Intel talked up at IDF, are destined for desktop and laptop platforms and will sport two or four cores along with an integrated graphics engine. The new design will include a new high bandwidth, low latency “ring” interconnect that enables the integrated graphics unit to share cache with the CPU cores. In general, Intel’s CPU-GPU design mimics AMD’s Fusion processor architecture, also initially targeted to the PC market.

The idea is to bring at least low-end and mid-range graphics support on-chip, eliminating the need for an external GPU on the motherboard. The integrated graphics is being aimed at a rapidly growing set of applications for client platforms, including HD video, 3D visualization, mainstream gaming, multi-tasking and online socializing and multimedia.

However, despite the growing popularity of GPU computing for technical computing, the next generation of Xeons and Opterons for servers are not going to have integrated graphics. Instead, the extra silicon real estate will be used for CPU cores. In the case of Sandy Bridge Xeons, expect to see up to 8 cores per chip, at least for the dual-socket version. AMD’s Interlagos Opteron, meanwhile, will come in 12-core and 16-core flavors.

At IDF, Intel demonstrated a next-generation 8-core Xeon processor (presumably the Sandy Bridge EP, or equivalent) in a two-socket server, referring to it as the “Romley” platform. According to Intel, this was the first public showing for this platform since it booted up last month. Intel went on to say that those chips were on schedule for production in the second half of 2011.

The particular application being demonstrated on Romley was decrypting and encrypting three video conference streams simultaneously. Since they had HyperThreading enabled, the app had 32 threads to play with, which Intel chief Paul Otellini remarked was “pretty amazing” for a two-socket server.

Keep in mind that AMD’s upcoming Interlagos chip will also support 32 threads in a two-socket box, but won’t need anything like HyperThreading to pull it off. Interlagos is based on AMD’s new Bulldozer core architecture, which doubles up on integer units inside a module. Interlagos has 8 Bulldozer modules, thus 16 cores per chip and 32 per 2P server.

AMD’s John Fruehe noted that even though the company was moving up to Bulldozer, the Interlagos processors have the same thermal envelope and snap into the same socket (G34) as the previous generation Magny-Cours chip, providing an easy upgrade path for Opteron customers. (Sandy Bridge Xeons will almost certainly require a socket change.) AMD will be sampling Interlagos with their partners before the end of this year and launching it in 2011.

Not surprisingly, Fruehe believes his company has the edge in next year’s CPU server battle, mainly because the Opterons will out-core the Xeons in a head-to-head match-up. That’s true even today, where the 12-core Magny-Cours chip is dueling with the 6-core Westmere EP and 8-core Nehalem EX.

In AMD’s own testing for Linpack performance, a two-socket Magny-Cours server easily outruns a two-socket Nehalem box. And although that benchmark matches up a previous generation quad-core Nehalem with a current generation 12-core Opteron, Fruehe said Magny-Cours would outperform the newer 6-core Westmere processors as well.

In fact, for a company that seemed rather unenthusiastic about multiplying cores just a few years ago, AMD can’t seem to get enough of them now. And that seems to reflect customer demand too. According to Fruehe, customers, and especially HPC customers, are selecting systems with the 12-core version of Magny-Cours over the 8-core variant.

The company was anticipating more users would opt for higher clock speeds and a better ratio of cores to memory/cache bandwidth, so would naturally gravitate toward the 8-core version. As it turns, a fair number of mainstream business customer did just that. But in HPC and elsewhere, there is a heavy preference for additional cores over clock speed.

“That bodes well for us as we get into 2011 because core counts go up again, from the 8 and 12 we have today to 12 and 16,” said Fruehe. “It really feels like customers are dying for more cores, so that puts us in a real good position as we bring out the Bulldozer products.”

That said, the core advantage for AMD’s top-of-the-line server chips might not result in better floating point performance compared to their Intel counterparts. Both Sandy Bridge and Bulldozer are supporting expanded 256-bit floating point operations, accessible through new AVX (advanced vector extensions) instructions. The wider vector will allow for up to two times the peak FLOPS throughput. But since each two-core Bulldozer module shares a single 256-bit floating point unit (as an aggregation of two 128-bit units), the Opterons will need twice as many cores to keep up the Xeons when the application is using these extra-wide FP operations.

Since none of these processors, not even the client versions, have been released into the wild yet, no specific performance data is available. AMD is promising a 50 percent better performance on Interlagos compared to Magny-Cours. But that refers to absolute peak throughput; your application mileage will almost certainly vary. Intel has been mum on any performance numbers for Sandy Bridge, other than stating the obvious FP throughput boost for the 256-bit AVX instructions. In any case, 2011 will be here soon enough and we’ll let the benchmarkers have at it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This