Intel, AMD Gear Up for 2011 Server Chip Battle

By Michael Feldman

September 16, 2010

Although 2010 still has a few months left to go, the competition in the x86 server processor arena for 2011 is already setting up to be a knock-down, drag-out fight. Both AMD and Intel are introducing new high-end server chips with revamped microarchitectures next year, and, at the same time, upping the core counts over their previous generation products. At a time when AMD is looking to make up lost market share, Intel is hoping to expand its dominance in the x86 server market.

This week at the Intel Developer Forum (IDF) extravaganza in San Francisco, Intel had the opportunity to provide some more tidbits about its next generation “Sandy Bridge” server processors, but chose to concentrate mostly on the client-side products and applications. This was a practical choice, given that the chipmaker is planning to launch two of its most interesting products later this year: the new “Tunnel Creek,” Atom E600 SoC processors for embedded apps and the first “Sandy Bridge” processors with integrated graphics for PCs.

Sandy Bridge, which represents the 32nm-based microarchitecture upgrade from Nehalem, will end up in Xeon server parts as well, but these chips are not expected to ship until well into 2011. They’ll be meeting AMD’s 32nm “Interlagos” Opteron CPUs in roughly the same timeframe.

The first Sandy Bridge chips, which Intel talked up at IDF, are destined for desktop and laptop platforms and will sport two or four cores along with an integrated graphics engine. The new design will include a new high bandwidth, low latency “ring” interconnect that enables the integrated graphics unit to share cache with the CPU cores. In general, Intel’s CPU-GPU design mimics AMD’s Fusion processor architecture, also initially targeted to the PC market.

The idea is to bring at least low-end and mid-range graphics support on-chip, eliminating the need for an external GPU on the motherboard. The integrated graphics is being aimed at a rapidly growing set of applications for client platforms, including HD video, 3D visualization, mainstream gaming, multi-tasking and online socializing and multimedia.

However, despite the growing popularity of GPU computing for technical computing, the next generation of Xeons and Opterons for servers are not going to have integrated graphics. Instead, the extra silicon real estate will be used for CPU cores. In the case of Sandy Bridge Xeons, expect to see up to 8 cores per chip, at least for the dual-socket version. AMD’s Interlagos Opteron, meanwhile, will come in 12-core and 16-core flavors.

At IDF, Intel demonstrated a next-generation 8-core Xeon processor (presumably the Sandy Bridge EP, or equivalent) in a two-socket server, referring to it as the “Romley” platform. According to Intel, this was the first public showing for this platform since it booted up last month. Intel went on to say that those chips were on schedule for production in the second half of 2011.

The particular application being demonstrated on Romley was decrypting and encrypting three video conference streams simultaneously. Since they had HyperThreading enabled, the app had 32 threads to play with, which Intel chief Paul Otellini remarked was “pretty amazing” for a two-socket server.

Keep in mind that AMD’s upcoming Interlagos chip will also support 32 threads in a two-socket box, but won’t need anything like HyperThreading to pull it off. Interlagos is based on AMD’s new Bulldozer core architecture, which doubles up on integer units inside a module. Interlagos has 8 Bulldozer modules, thus 16 cores per chip and 32 per 2P server.

AMD’s John Fruehe noted that even though the company was moving up to Bulldozer, the Interlagos processors have the same thermal envelope and snap into the same socket (G34) as the previous generation Magny-Cours chip, providing an easy upgrade path for Opteron customers. (Sandy Bridge Xeons will almost certainly require a socket change.) AMD will be sampling Interlagos with their partners before the end of this year and launching it in 2011.

Not surprisingly, Fruehe believes his company has the edge in next year’s CPU server battle, mainly because the Opterons will out-core the Xeons in a head-to-head match-up. That’s true even today, where the 12-core Magny-Cours chip is dueling with the 6-core Westmere EP and 8-core Nehalem EX.

In AMD’s own testing for Linpack performance, a two-socket Magny-Cours server easily outruns a two-socket Nehalem box. And although that benchmark matches up a previous generation quad-core Nehalem with a current generation 12-core Opteron, Fruehe said Magny-Cours would outperform the newer 6-core Westmere processors as well.

In fact, for a company that seemed rather unenthusiastic about multiplying cores just a few years ago, AMD can’t seem to get enough of them now. And that seems to reflect customer demand too. According to Fruehe, customers, and especially HPC customers, are selecting systems with the 12-core version of Magny-Cours over the 8-core variant.

The company was anticipating more users would opt for higher clock speeds and a better ratio of cores to memory/cache bandwidth, so would naturally gravitate toward the 8-core version. As it turns, a fair number of mainstream business customer did just that. But in HPC and elsewhere, there is a heavy preference for additional cores over clock speed.

“That bodes well for us as we get into 2011 because core counts go up again, from the 8 and 12 we have today to 12 and 16,” said Fruehe. “It really feels like customers are dying for more cores, so that puts us in a real good position as we bring out the Bulldozer products.”

That said, the core advantage for AMD’s top-of-the-line server chips might not result in better floating point performance compared to their Intel counterparts. Both Sandy Bridge and Bulldozer are supporting expanded 256-bit floating point operations, accessible through new AVX (advanced vector extensions) instructions. The wider vector will allow for up to two times the peak FLOPS throughput. But since each two-core Bulldozer module shares a single 256-bit floating point unit (as an aggregation of two 128-bit units), the Opterons will need twice as many cores to keep up the Xeons when the application is using these extra-wide FP operations.

Since none of these processors, not even the client versions, have been released into the wild yet, no specific performance data is available. AMD is promising a 50 percent better performance on Interlagos compared to Magny-Cours. But that refers to absolute peak throughput; your application mileage will almost certainly vary. Intel has been mum on any performance numbers for Sandy Bridge, other than stating the obvious FP throughput boost for the 256-bit AVX instructions. In any case, 2011 will be here soon enough and we’ll let the benchmarkers have at it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This