Intel, AMD Gear Up for 2011 Server Chip Battle

By Michael Feldman

September 16, 2010

Although 2010 still has a few months left to go, the competition in the x86 server processor arena for 2011 is already setting up to be a knock-down, drag-out fight. Both AMD and Intel are introducing new high-end server chips with revamped microarchitectures next year, and, at the same time, upping the core counts over their previous generation products. At a time when AMD is looking to make up lost market share, Intel is hoping to expand its dominance in the x86 server market.

This week at the Intel Developer Forum (IDF) extravaganza in San Francisco, Intel had the opportunity to provide some more tidbits about its next generation “Sandy Bridge” server processors, but chose to concentrate mostly on the client-side products and applications. This was a practical choice, given that the chipmaker is planning to launch two of its most interesting products later this year: the new “Tunnel Creek,” Atom E600 SoC processors for embedded apps and the first “Sandy Bridge” processors with integrated graphics for PCs.

Sandy Bridge, which represents the 32nm-based microarchitecture upgrade from Nehalem, will end up in Xeon server parts as well, but these chips are not expected to ship until well into 2011. They’ll be meeting AMD’s 32nm “Interlagos” Opteron CPUs in roughly the same timeframe.

The first Sandy Bridge chips, which Intel talked up at IDF, are destined for desktop and laptop platforms and will sport two or four cores along with an integrated graphics engine. The new design will include a new high bandwidth, low latency “ring” interconnect that enables the integrated graphics unit to share cache with the CPU cores. In general, Intel’s CPU-GPU design mimics AMD’s Fusion processor architecture, also initially targeted to the PC market.

The idea is to bring at least low-end and mid-range graphics support on-chip, eliminating the need for an external GPU on the motherboard. The integrated graphics is being aimed at a rapidly growing set of applications for client platforms, including HD video, 3D visualization, mainstream gaming, multi-tasking and online socializing and multimedia.

However, despite the growing popularity of GPU computing for technical computing, the next generation of Xeons and Opterons for servers are not going to have integrated graphics. Instead, the extra silicon real estate will be used for CPU cores. In the case of Sandy Bridge Xeons, expect to see up to 8 cores per chip, at least for the dual-socket version. AMD’s Interlagos Opteron, meanwhile, will come in 12-core and 16-core flavors.

At IDF, Intel demonstrated a next-generation 8-core Xeon processor (presumably the Sandy Bridge EP, or equivalent) in a two-socket server, referring to it as the “Romley” platform. According to Intel, this was the first public showing for this platform since it booted up last month. Intel went on to say that those chips were on schedule for production in the second half of 2011.

The particular application being demonstrated on Romley was decrypting and encrypting three video conference streams simultaneously. Since they had HyperThreading enabled, the app had 32 threads to play with, which Intel chief Paul Otellini remarked was “pretty amazing” for a two-socket server.

Keep in mind that AMD’s upcoming Interlagos chip will also support 32 threads in a two-socket box, but won’t need anything like HyperThreading to pull it off. Interlagos is based on AMD’s new Bulldozer core architecture, which doubles up on integer units inside a module. Interlagos has 8 Bulldozer modules, thus 16 cores per chip and 32 per 2P server.

AMD’s John Fruehe noted that even though the company was moving up to Bulldozer, the Interlagos processors have the same thermal envelope and snap into the same socket (G34) as the previous generation Magny-Cours chip, providing an easy upgrade path for Opteron customers. (Sandy Bridge Xeons will almost certainly require a socket change.) AMD will be sampling Interlagos with their partners before the end of this year and launching it in 2011.

Not surprisingly, Fruehe believes his company has the edge in next year’s CPU server battle, mainly because the Opterons will out-core the Xeons in a head-to-head match-up. That’s true even today, where the 12-core Magny-Cours chip is dueling with the 6-core Westmere EP and 8-core Nehalem EX.

In AMD’s own testing for Linpack performance, a two-socket Magny-Cours server easily outruns a two-socket Nehalem box. And although that benchmark matches up a previous generation quad-core Nehalem with a current generation 12-core Opteron, Fruehe said Magny-Cours would outperform the newer 6-core Westmere processors as well.

In fact, for a company that seemed rather unenthusiastic about multiplying cores just a few years ago, AMD can’t seem to get enough of them now. And that seems to reflect customer demand too. According to Fruehe, customers, and especially HPC customers, are selecting systems with the 12-core version of Magny-Cours over the 8-core variant.

The company was anticipating more users would opt for higher clock speeds and a better ratio of cores to memory/cache bandwidth, so would naturally gravitate toward the 8-core version. As it turns, a fair number of mainstream business customer did just that. But in HPC and elsewhere, there is a heavy preference for additional cores over clock speed.

“That bodes well for us as we get into 2011 because core counts go up again, from the 8 and 12 we have today to 12 and 16,” said Fruehe. “It really feels like customers are dying for more cores, so that puts us in a real good position as we bring out the Bulldozer products.”

That said, the core advantage for AMD’s top-of-the-line server chips might not result in better floating point performance compared to their Intel counterparts. Both Sandy Bridge and Bulldozer are supporting expanded 256-bit floating point operations, accessible through new AVX (advanced vector extensions) instructions. The wider vector will allow for up to two times the peak FLOPS throughput. But since each two-core Bulldozer module shares a single 256-bit floating point unit (as an aggregation of two 128-bit units), the Opterons will need twice as many cores to keep up the Xeons when the application is using these extra-wide FP operations.

Since none of these processors, not even the client versions, have been released into the wild yet, no specific performance data is available. AMD is promising a 50 percent better performance on Interlagos compared to Magny-Cours. But that refers to absolute peak throughput; your application mileage will almost certainly vary. Intel has been mum on any performance numbers for Sandy Bridge, other than stating the obvious FP throughput boost for the 256-bit AVX instructions. In any case, 2011 will be here soon enough and we’ll let the benchmarkers have at it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This