GPGPU Finds Its Groove in HPC

By Michael Feldman

September 21, 2010

The NVIDIA GPU Technology Conference (GTC) kicked off on Tuesday amid a flurry of news that suggests the GPGPU HPC business is quickly moving into the mainstream. After just four years since the introduction of commercial-grade GPU computing, the technology has become firmly established and is poised to spill out across every application domain that has a need for data-parallel computing.

At this stage, GPU computing technology is especially apparent in the high performance computing arena. As of today, nearly all the major and minor OEMs that serve this market have announced NVIDIA GPU-equipped systems, including IBM, Cray, HP, SGI, Dell, Appro, T-Platforms, Bull, Supermicro and Tyan, among others. NVIDIA, which used to offer its own standalone Tesla GPU 1U box (the S-series products), has exited the server business, apparently passing that task off to server maker NextIO. As of today, NVIDIA is only providing Tesla cards (C-series) and modules (M-series) to the market.

Actually, that’s not quite accurate. One new Tesla product that was indirectly announced this week is the X2070, an M-series variant specifically designed for  challengingly-dense blade form factors. The new module takes up less than half the real estate of the M2070 board and, like it’s predecessor, has PCIe connectivity and uses a passive heat sink for cooling. The X2070 graphics chip is the same one used by the M2070, so has the same performance characteristics (515 DP gigaflops) and memory capacity (6 GB GDDR5).  NVIDIA has made no formal announcement of the X2070. The only reason we know about it at all is because Cray and T-Platforms this week announced future blades based on the new Tesla.

Cray will add the X2070 as an option on its XE6 (“Baker”) supercomputer line. “This is something we feel is mature enough to be in a scalable production supercomputer system,” said Barry Bolding, vice president of Cray’s products division. At this point, the company is not releasing any information about the new blade design or even the availability date for the new offering, although Bolding did say that they’re aligning their shipping dates very closely with the release of the X2070. In other words, they’ll be ready when NVIDIA comes through with the hardware.

Russian HPC cluster vendor T-Platforms had a lot more to say about its upcoming Tesla X2070-based blade, which they’re calling the TB2-TL. Known for designing extra-dense blades, T-Platforms has managed to stuff 16 blades, consisting of 32 X2070 GPUs and 32 Intel Xeon CPUs (low voltage L5600 “Westmere” processors) into a 7U chassis. To maximize bandwidth, each X2070 is routed through an Intel 5520 North Bridge chip and has a dedicated single port QDR InfiniBand chip. A single enclosure delivers 17.5 peak teraflops. Like the Cray XE6, the TB2-TL is aimed at large clusters and petascale supercomputers.

According to Alexey Nechuyatov, director of product marketing for T-Platforms, they’re looking into the possibility of offering the TB2-TL in the US, most likely through a system integrator. Despite the presence of established US-based vendors with GPU-equipped blades, like Cray, IBM, and Dell, Nechuyatov believes the unique design of its new GPU offering (not to mention aggressive price point of around $300K per enclosure) could find an audience in the states. “We might be outnumbered,” he said, “but never outgunned.” T-Platforms is planning to make the TB2-TL available for the Russian market in Q4 2010, and for Europe in Q1 2011.

Adding to the GPU blade rush is IBM, who will be adding Tesla M2070 GPUs to its popular BladeCenter offering. NVIDIA is especially happy to have IBM sign on for another Tesla-based product, having added the iDataPlex dx360 M3 back in May. That product paired two Intel CPUs with two Tesla M2050 GPUs in a rackmount server. The new BladeCenter variant uses the HS22 as the base blade, to which up to four M2070 expansion blades can be added. At its maximum configuration, up to 7 GPUs can be placed in a 7U enclosure. It is expected to be available in Q4 2010.

On the software side, the developer community seems to be as enamored with GPU acceleration as the OEMs. NVIDIA estimates there are currently about 100 thousand active NVIDIA GPU developers today, from a standing start in 2007. Much of this activity is directed at HPC codes. Whether it’s in astrophysics, molecular dynamics, bioinformatics, or climate modeling, the level of impact in those communities is continuing to increase. Developers in these areas, and others, are porting their existing CPU-based codes or doing ground-up application development specifically targeting GPU platforms.

In climate and weather modeling, in particular, there are a range of models that are being targeted or retargeted to GPU platforms via CUDA. They include such codes as the Weather Research and Forecasting (WRF) model being developed at NCAR and elsewhere; the ASUCA Weather Model developed by Tokyo Tech and the Japan Meteorological Agency; and the Non-hydrostatic Icosahedral Model (NIM) at the NOAA. There are also major efforts for tsunami simulations, CO2 modeling, and ocean circulation codes being conducted on GPU platforms.

The CUDA development tools have been the key enabler for the whole ecosystem. Thanks to NVIDIA’s early dominance in GPGPU, CUDA C/C++ has emerged as the most widely used GPU programming environment for developers. There’s even talk now of targeting CUDA to CPUs, given that the language is inherently suited to multicore and manycore architectures. “To some extent, CUDA is becoming the most widely used parallel programming model,” said Sumit Gupta, senior product manager with the NVIDIA’s Tesla GPU Computing Group. “So if a university wants to teach parallel programming, they often end up doing GPU programming.”

Today, there are a number of attempts to create CPU ports of CUDA. There are two academic projects: one out of the University of Illinois, Urbana-Champaign called MCUDA, and another out of Georgia Tech called Ocelot. Now The Portland Group (aka PGI), has stepped up with a commercial CUDA CPU compiler. At GTC this week, PGI announced its intentions to offer a CUDA C for x86 development platform, which it hopes to demonstrate at SC10 in November.

If successful, developers will be able to write CUDA applications that can be run on either GPUs or CPUs. This, of course, was the whole idea behind OpenCL, the open standard language for multicore/manycore architectures. But since NVIDIA publishes the CUDA APIs, for all practical purposes it too is an open standard. Anyone — including AMD, by the way — could create a CUDA port for any processor with parallel hardware features. NVIDIA officially maintains it is agnostic regarding what people use to program their hardware, but the company’s enthusiasm for its home-grown CUDA software is abundantly clear.

CPU support aside, the GPGPU ISV community continues to gain momentum, as is evident if you peruse the exhibit hall and session list at GTC. Besides scientific computing, the technology has also expanded into business intelligence (Jedox Palo, Empulse Parstream and Milabra Display Ads), factory automation (Dalsa and MvTech), electronic design automation (Rocketick and Agilent), and ray tracing/rendering (Autodesk 3ds Max, Bunkspeed and Lightworks).

On Tuesday, ANSYS announced it had implemented GPU acceleration for its ANSYS Mechanical product, a widely used software package used for industrial designs. Using the GPU, they have realized a 2X speedup compared to its CPU-only implementation. That’s a fairly modest gain compared to 10x to 500X speedups some people claim for more science-heavy codes. But for industrial design, cutting simulation times in half is a big deal.

NVIDIA, itself, is using Agilent software for chip design, running the app on a small in-house GPU cluster. The company is also evaluating the GPU-accelerated Rocketick chip verification tool. Early results look promising according to NVIDIA’s Gupta. “We also use ANSYS Mechanical for our designs, and we’ll definitely use the GPU version of that,” he said, “So we’re eating our own dog food.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This