GPGPU Finds Its Groove in HPC

By Michael Feldman

September 21, 2010

The NVIDIA GPU Technology Conference (GTC) kicked off on Tuesday amid a flurry of news that suggests the GPGPU HPC business is quickly moving into the mainstream. After just four years since the introduction of commercial-grade GPU computing, the technology has become firmly established and is poised to spill out across every application domain that has a need for data-parallel computing.

At this stage, GPU computing technology is especially apparent in the high performance computing arena. As of today, nearly all the major and minor OEMs that serve this market have announced NVIDIA GPU-equipped systems, including IBM, Cray, HP, SGI, Dell, Appro, T-Platforms, Bull, Supermicro and Tyan, among others. NVIDIA, which used to offer its own standalone Tesla GPU 1U box (the S-series products), has exited the server business, apparently passing that task off to server maker NextIO. As of today, NVIDIA is only providing Tesla cards (C-series) and modules (M-series) to the market.

Actually, that’s not quite accurate. One new Tesla product that was indirectly announced this week is the X2070, an M-series variant specifically designed for  challengingly-dense blade form factors. The new module takes up less than half the real estate of the M2070 board and, like it’s predecessor, has PCIe connectivity and uses a passive heat sink for cooling. The X2070 graphics chip is the same one used by the M2070, so has the same performance characteristics (515 DP gigaflops) and memory capacity (6 GB GDDR5).  NVIDIA has made no formal announcement of the X2070. The only reason we know about it at all is because Cray and T-Platforms this week announced future blades based on the new Tesla.

Cray will add the X2070 as an option on its XE6 (“Baker”) supercomputer line. “This is something we feel is mature enough to be in a scalable production supercomputer system,” said Barry Bolding, vice president of Cray’s products division. At this point, the company is not releasing any information about the new blade design or even the availability date for the new offering, although Bolding did say that they’re aligning their shipping dates very closely with the release of the X2070. In other words, they’ll be ready when NVIDIA comes through with the hardware.

Russian HPC cluster vendor T-Platforms had a lot more to say about its upcoming Tesla X2070-based blade, which they’re calling the TB2-TL. Known for designing extra-dense blades, T-Platforms has managed to stuff 16 blades, consisting of 32 X2070 GPUs and 32 Intel Xeon CPUs (low voltage L5600 “Westmere” processors) into a 7U chassis. To maximize bandwidth, each X2070 is routed through an Intel 5520 North Bridge chip and has a dedicated single port QDR InfiniBand chip. A single enclosure delivers 17.5 peak teraflops. Like the Cray XE6, the TB2-TL is aimed at large clusters and petascale supercomputers.

According to Alexey Nechuyatov, director of product marketing for T-Platforms, they’re looking into the possibility of offering the TB2-TL in the US, most likely through a system integrator. Despite the presence of established US-based vendors with GPU-equipped blades, like Cray, IBM, and Dell, Nechuyatov believes the unique design of its new GPU offering (not to mention aggressive price point of around $300K per enclosure) could find an audience in the states. “We might be outnumbered,” he said, “but never outgunned.” T-Platforms is planning to make the TB2-TL available for the Russian market in Q4 2010, and for Europe in Q1 2011.

Adding to the GPU blade rush is IBM, who will be adding Tesla M2070 GPUs to its popular BladeCenter offering. NVIDIA is especially happy to have IBM sign on for another Tesla-based product, having added the iDataPlex dx360 M3 back in May. That product paired two Intel CPUs with two Tesla M2050 GPUs in a rackmount server. The new BladeCenter variant uses the HS22 as the base blade, to which up to four M2070 expansion blades can be added. At its maximum configuration, up to 7 GPUs can be placed in a 7U enclosure. It is expected to be available in Q4 2010.

On the software side, the developer community seems to be as enamored with GPU acceleration as the OEMs. NVIDIA estimates there are currently about 100 thousand active NVIDIA GPU developers today, from a standing start in 2007. Much of this activity is directed at HPC codes. Whether it’s in astrophysics, molecular dynamics, bioinformatics, or climate modeling, the level of impact in those communities is continuing to increase. Developers in these areas, and others, are porting their existing CPU-based codes or doing ground-up application development specifically targeting GPU platforms.

In climate and weather modeling, in particular, there are a range of models that are being targeted or retargeted to GPU platforms via CUDA. They include such codes as the Weather Research and Forecasting (WRF) model being developed at NCAR and elsewhere; the ASUCA Weather Model developed by Tokyo Tech and the Japan Meteorological Agency; and the Non-hydrostatic Icosahedral Model (NIM) at the NOAA. There are also major efforts for tsunami simulations, CO2 modeling, and ocean circulation codes being conducted on GPU platforms.

The CUDA development tools have been the key enabler for the whole ecosystem. Thanks to NVIDIA’s early dominance in GPGPU, CUDA C/C++ has emerged as the most widely used GPU programming environment for developers. There’s even talk now of targeting CUDA to CPUs, given that the language is inherently suited to multicore and manycore architectures. “To some extent, CUDA is becoming the most widely used parallel programming model,” said Sumit Gupta, senior product manager with the NVIDIA’s Tesla GPU Computing Group. “So if a university wants to teach parallel programming, they often end up doing GPU programming.”

Today, there are a number of attempts to create CPU ports of CUDA. There are two academic projects: one out of the University of Illinois, Urbana-Champaign called MCUDA, and another out of Georgia Tech called Ocelot. Now The Portland Group (aka PGI), has stepped up with a commercial CUDA CPU compiler. At GTC this week, PGI announced its intentions to offer a CUDA C for x86 development platform, which it hopes to demonstrate at SC10 in November.

If successful, developers will be able to write CUDA applications that can be run on either GPUs or CPUs. This, of course, was the whole idea behind OpenCL, the open standard language for multicore/manycore architectures. But since NVIDIA publishes the CUDA APIs, for all practical purposes it too is an open standard. Anyone — including AMD, by the way — could create a CUDA port for any processor with parallel hardware features. NVIDIA officially maintains it is agnostic regarding what people use to program their hardware, but the company’s enthusiasm for its home-grown CUDA software is abundantly clear.

CPU support aside, the GPGPU ISV community continues to gain momentum, as is evident if you peruse the exhibit hall and session list at GTC. Besides scientific computing, the technology has also expanded into business intelligence (Jedox Palo, Empulse Parstream and Milabra Display Ads), factory automation (Dalsa and MvTech), electronic design automation (Rocketick and Agilent), and ray tracing/rendering (Autodesk 3ds Max, Bunkspeed and Lightworks).

On Tuesday, ANSYS announced it had implemented GPU acceleration for its ANSYS Mechanical product, a widely used software package used for industrial designs. Using the GPU, they have realized a 2X speedup compared to its CPU-only implementation. That’s a fairly modest gain compared to 10x to 500X speedups some people claim for more science-heavy codes. But for industrial design, cutting simulation times in half is a big deal.

NVIDIA, itself, is using Agilent software for chip design, running the app on a small in-house GPU cluster. The company is also evaluating the GPU-accelerated Rocketick chip verification tool. Early results look promising according to NVIDIA’s Gupta. “We also use ANSYS Mechanical for our designs, and we’ll definitely use the GPU version of that,” he said, “So we’re eating our own dog food.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This