GPGPU Finds Its Groove in HPC

By Michael Feldman

September 21, 2010

The NVIDIA GPU Technology Conference (GTC) kicked off on Tuesday amid a flurry of news that suggests the GPGPU HPC business is quickly moving into the mainstream. After just four years since the introduction of commercial-grade GPU computing, the technology has become firmly established and is poised to spill out across every application domain that has a need for data-parallel computing.

At this stage, GPU computing technology is especially apparent in the high performance computing arena. As of today, nearly all the major and minor OEMs that serve this market have announced NVIDIA GPU-equipped systems, including IBM, Cray, HP, SGI, Dell, Appro, T-Platforms, Bull, Supermicro and Tyan, among others. NVIDIA, which used to offer its own standalone Tesla GPU 1U box (the S-series products), has exited the server business, apparently passing that task off to server maker NextIO. As of today, NVIDIA is only providing Tesla cards (C-series) and modules (M-series) to the market.

Actually, that’s not quite accurate. One new Tesla product that was indirectly announced this week is the X2070, an M-series variant specifically designed for  challengingly-dense blade form factors. The new module takes up less than half the real estate of the M2070 board and, like it’s predecessor, has PCIe connectivity and uses a passive heat sink for cooling. The X2070 graphics chip is the same one used by the M2070, so has the same performance characteristics (515 DP gigaflops) and memory capacity (6 GB GDDR5).  NVIDIA has made no formal announcement of the X2070. The only reason we know about it at all is because Cray and T-Platforms this week announced future blades based on the new Tesla.

Cray will add the X2070 as an option on its XE6 (“Baker”) supercomputer line. “This is something we feel is mature enough to be in a scalable production supercomputer system,” said Barry Bolding, vice president of Cray’s products division. At this point, the company is not releasing any information about the new blade design or even the availability date for the new offering, although Bolding did say that they’re aligning their shipping dates very closely with the release of the X2070. In other words, they’ll be ready when NVIDIA comes through with the hardware.

Russian HPC cluster vendor T-Platforms had a lot more to say about its upcoming Tesla X2070-based blade, which they’re calling the TB2-TL. Known for designing extra-dense blades, T-Platforms has managed to stuff 16 blades, consisting of 32 X2070 GPUs and 32 Intel Xeon CPUs (low voltage L5600 “Westmere” processors) into a 7U chassis. To maximize bandwidth, each X2070 is routed through an Intel 5520 North Bridge chip and has a dedicated single port QDR InfiniBand chip. A single enclosure delivers 17.5 peak teraflops. Like the Cray XE6, the TB2-TL is aimed at large clusters and petascale supercomputers.

According to Alexey Nechuyatov, director of product marketing for T-Platforms, they’re looking into the possibility of offering the TB2-TL in the US, most likely through a system integrator. Despite the presence of established US-based vendors with GPU-equipped blades, like Cray, IBM, and Dell, Nechuyatov believes the unique design of its new GPU offering (not to mention aggressive price point of around $300K per enclosure) could find an audience in the states. “We might be outnumbered,” he said, “but never outgunned.” T-Platforms is planning to make the TB2-TL available for the Russian market in Q4 2010, and for Europe in Q1 2011.

Adding to the GPU blade rush is IBM, who will be adding Tesla M2070 GPUs to its popular BladeCenter offering. NVIDIA is especially happy to have IBM sign on for another Tesla-based product, having added the iDataPlex dx360 M3 back in May. That product paired two Intel CPUs with two Tesla M2050 GPUs in a rackmount server. The new BladeCenter variant uses the HS22 as the base blade, to which up to four M2070 expansion blades can be added. At its maximum configuration, up to 7 GPUs can be placed in a 7U enclosure. It is expected to be available in Q4 2010.

On the software side, the developer community seems to be as enamored with GPU acceleration as the OEMs. NVIDIA estimates there are currently about 100 thousand active NVIDIA GPU developers today, from a standing start in 2007. Much of this activity is directed at HPC codes. Whether it’s in astrophysics, molecular dynamics, bioinformatics, or climate modeling, the level of impact in those communities is continuing to increase. Developers in these areas, and others, are porting their existing CPU-based codes or doing ground-up application development specifically targeting GPU platforms.

In climate and weather modeling, in particular, there are a range of models that are being targeted or retargeted to GPU platforms via CUDA. They include such codes as the Weather Research and Forecasting (WRF) model being developed at NCAR and elsewhere; the ASUCA Weather Model developed by Tokyo Tech and the Japan Meteorological Agency; and the Non-hydrostatic Icosahedral Model (NIM) at the NOAA. There are also major efforts for tsunami simulations, CO2 modeling, and ocean circulation codes being conducted on GPU platforms.

The CUDA development tools have been the key enabler for the whole ecosystem. Thanks to NVIDIA’s early dominance in GPGPU, CUDA C/C++ has emerged as the most widely used GPU programming environment for developers. There’s even talk now of targeting CUDA to CPUs, given that the language is inherently suited to multicore and manycore architectures. “To some extent, CUDA is becoming the most widely used parallel programming model,” said Sumit Gupta, senior product manager with the NVIDIA’s Tesla GPU Computing Group. “So if a university wants to teach parallel programming, they often end up doing GPU programming.”

Today, there are a number of attempts to create CPU ports of CUDA. There are two academic projects: one out of the University of Illinois, Urbana-Champaign called MCUDA, and another out of Georgia Tech called Ocelot. Now The Portland Group (aka PGI), has stepped up with a commercial CUDA CPU compiler. At GTC this week, PGI announced its intentions to offer a CUDA C for x86 development platform, which it hopes to demonstrate at SC10 in November.

If successful, developers will be able to write CUDA applications that can be run on either GPUs or CPUs. This, of course, was the whole idea behind OpenCL, the open standard language for multicore/manycore architectures. But since NVIDIA publishes the CUDA APIs, for all practical purposes it too is an open standard. Anyone — including AMD, by the way — could create a CUDA port for any processor with parallel hardware features. NVIDIA officially maintains it is agnostic regarding what people use to program their hardware, but the company’s enthusiasm for its home-grown CUDA software is abundantly clear.

CPU support aside, the GPGPU ISV community continues to gain momentum, as is evident if you peruse the exhibit hall and session list at GTC. Besides scientific computing, the technology has also expanded into business intelligence (Jedox Palo, Empulse Parstream and Milabra Display Ads), factory automation (Dalsa and MvTech), electronic design automation (Rocketick and Agilent), and ray tracing/rendering (Autodesk 3ds Max, Bunkspeed and Lightworks).

On Tuesday, ANSYS announced it had implemented GPU acceleration for its ANSYS Mechanical product, a widely used software package used for industrial designs. Using the GPU, they have realized a 2X speedup compared to its CPU-only implementation. That’s a fairly modest gain compared to 10x to 500X speedups some people claim for more science-heavy codes. But for industrial design, cutting simulation times in half is a big deal.

NVIDIA, itself, is using Agilent software for chip design, running the app on a small in-house GPU cluster. The company is also evaluating the GPU-accelerated Rocketick chip verification tool. Early results look promising according to NVIDIA’s Gupta. “We also use ANSYS Mechanical for our designs, and we’ll definitely use the GPU version of that,” he said, “So we’re eating our own dog food.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This