GPU Tech Conference Wrap-Up

By Michael Feldman

September 23, 2010

If there’s one take away from this week’s NVIDIA GPU Technology Conference (GTC), it’s that GPU computing has grown up. Having been to last year’s event, it’s amazing to see how many more academic researchers and companies are taking the technology seriously in 2010. The exhibition hall was twice the size of GTC in 2009, enough to accommodate the 100 or so vendors plying their GPGPU wares. As NVIDIA CEO Jen-Hsun Huang said in Thursday morning’s fireside chat session, “This is the year when applications developed on GPU computing go into production.”

There was so much activity centered on technical computing at this year’s event that at times it seemed like a CPU-less version of November’s Supercomputing Conference. That was also reflected in the exhibitor list, which included HPC stalwarts like IBM, HP, SGI, Dell, Appro, Supermicro, Microsoft, The Portland Group, Platform Computing, Mellanox, T-Platforms and at least a dozen others.

Application areas like seismic exploration, weather modeling, computer vision, and medical imaging are latching onto this technology quickly. Just slightly further behind are domains like biomolecular modeling, which appears to be ripe for the GPU. The Wednesday keynote by Dr. Klaus Schulten, a computational chemist at University of Illinois, Urbana-Champaign, highlighted some early benefits in this area.

Schulten and his team at UI have started applying GPU acceleration to a range of molecular simulations. In his work, Schulten is employing GPGPU technology to develop the concept of a “computational microscope,” which is designed for nanoscale examination of biomolecules and cells. This virtual microscope consists of basic chemistry and physics algorithms, NAMD software (which will soon offer a GPU port), and supercomputing hardware.

One application that Schulten talked about was modeling the flu drug Tamiflu to determine how the H1N1 (“swine flu”) virus developed resistance to it. He’s also using the technology to study such phenomenon as virus infections, how proteins are synthesized, the mechanism of photosynthesis, epigenetics, and quantum chemistry. Some of the work is being accomplished on GPU workstations, but the larger models use NCSA’s Lincoln supercomputer, a heterogeneous cluster constructed from Dell PowerEdge servers and S1070 Tesla servers. Speedups on applications varied, the best being the quantum chemistry application. In that case, a simulation run that took a day with a CPU, took just a minute on the GPU platform.

There were a couple of sessions on the military applications of GPU computing, which looks to be a lucrative area for this technology. One presentation, hosted by EM Photonics, illustrated how GPGPU technology is being employed to accelerate compute-intensive applications in this domain. For example, an advanced image processing application was able to enhance long-distance photographs blurred by atmospheric distortion. GPU acceleration made it possible to perform this digital enhancement in real-time, opening up new applications for warfare and security operations. Other apps include electromagnetics simulations and CFD — the latter being used to simulate aircraft landings on carriers. Depending on the military scenario, the GPU platform could be a desktop machine, an embedded system, or a cluster.

Other GPU computing applications that got some exposure at GTC this year are business intelligence, complex event processing, and speech recognition — three areas that up until now would not have been associated with graphics processors. And of course there were a plethora of esoteric research applications, for example, Using GPUs for Real-Time Brain-Computer Interfaces — something that would have come in handy at GTC this week, give the overload of sessions, posters, exhibits, and after-hours partying.

This also looks to be a breakout year for ISV support of GPGPU in HPC. At the event, ANSYS announced it would be incorporating GPU acceleration into its popular engineering modeling and analysis solution, ANSYS Mechanical. That product is slated for release later in the year. And although SIMULIA and Livermore Software Technology Corp. (LSTC) made no formal announcements this week, two GTC presentations on Thursday suggest they also will be bringing out GPGPU-support for their flagship products (Abaqus FEA and LS-Dyna, respectively) within the next few months.

Even though GTC was more about developers and applications, there were a few sessions highlighting some of the larger GPU supercomputers deployed, or about to be deployed. In this latter category is TSUBAME 2.0, Tokyo Tech’s next-generation 2.4 petaflop super, which will be stuffed to the gills with 4,244 Tesla M2050 GPUs. In Tuesday’s presentation by Satoshi Matsuoka, he spotlighted some of the cutting-edge apps that will be running on the new machine. This includes ASUCA, Japan’s next-generation weather forecasting code that has been completely ported to the GPU (and reportedly took a year to do so). The result is that they will have a weather modeling application that is faster than real-time and works at resolutions of 0.5 km. According to Matsuoka, TSUBAME 2.0 is installed and undergoing stress tests, and will be formally announced in early October — so expect more coverage to follow.

If 2.4 petaflop supers don’t impress you, you’ll just have to wait a bit. Thanks to a brief peek at NVIDIA’s roadmap on Tuesday, the next generation of NVIDIA GPUs, Kepler, is slated to arrive in 2011. As Jen-Hsun Huang noted, “GPU computing is just starting. It’s nothing compared to what you’re going to have in a couple of years.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This