Microsoft Aims for Client-Cluster-Cloud Unification in Technical Computing

By Michael Feldman

September 27, 2010

Last week’s High Performance Computing Financial Markets conference in New York gave Microsoft an opening to announce the official release of Windows HPC Server 2008 R2, the software giant’s third generation HPC server platform. It also provided Microsoft a venue to spell out its technical computing strategy in more detail, a process the company began in May.

The thrust of Microsoft’s new vision is to converge the software environment for clients, clusters and clouds so that HPC-style applications can run across all three platforms with minimal fuss for developers and end users. Between the parallel support in Visual Studio, .NET, Parallel LINQ, Dryad, HPC server and Windows Azure, the company has built an impressive portfolio of software for scale-out applications. At the center of the technical computing strategy is Microsoft’s HPC server, currently Windows HPC Server 2008 R2, that can hook into the desktop today and will be able to extend into the company’s Azure cloud in the very near future.

According to Bill Hilf, general manager of Microsoft’s Technical Computing Group, the multicore phenomenon and cloud computing have conspired to make parallel programming pervasive. Of course, parallelism has been the mainstay of high performance computing for years, but until a few years ago it was optional almost everywhere else. That’s all changed. Clients, clusters and clouds are leveling the playing field for scalable applications, or as Hilf put it: “Parallelism is becoming an increasingly mainstream need.”

To Microsoft, this translates into a business opportunity. Between Visual Studio libraries and .NET on the client, HPC server on the cluster, and Azure in the cloud, the company has managed to get its software in all the right places. In fact, no other single vendor can match its horizontal breadth of system software, especially parallel runtimes. The challenge is to generalize the model so that customers can leverage their applications across all three platforms, without extensive rewriting.

The new Windows HPC Server 2008 R2 starts down that path with the built-in capability to dynamically tap into idle Windows 7 workstations and treat them like extra nodes on the cluster. The idea is that on weekends and at night, these idle PCs can be used to expand a company’s local compute cluster for the price of the electricity to run them. For loosely-coupled apps (that is, applications that don’t require InfiniBand-level latency and bandwidth) the extra processing power can be used to run a variety of embarrassingly parallel applications.

Along those same lines, the new HPC server has the more general capability to dynamically shrink and expand cluster resources, nodes or otherwise. So if more important work arrives, that job receives priority for compute resources. That could entail jobs with lower priority getting kicked off nodes (presumably gracefully) until the higher priority work completes.

Corralling idle workstations and dynamically prioritizing cluster resources is just working at the edges. The real end game is to provide an HPC path to their Azure cloud. Once again, the idea is to make cloud resources appear as a seamless extension to the local compute cluster or desktop, so developers don’t have to rewrite their applications to scale up.

Adding Azure instances to a cluster was demonstrated at the High Performance Computing Financial Markets event last week. According to Kyril Faenov, the second GM of the Microsoft’s Technical Computing Group, the HPC Server/Azure integration is already working in the lab today. Currently they are signing up beta customers to kick the tires, and are planning for an initial release later this fall. That version will be the first of a set of rolling updates that will take place over the next year or so to add new cloud-to-cluster capabilities. The first version will be able to handle embarrassingly parallel (that is, non-MPI) apps, since it requires a relatively simple programming model.

As a follow-up to that effort, Azure will be outfitted for MPI. When that happens, a typical HPC workload can burst into the cloud from any Windows HPC cluster. According to Faenov, Microsoft is already evaluating the type of network interconnect and infrastructure that will be needed for this class of tightly-coupled HPC apps, and should have a version of the cloud offering ready to go sometime in 2011. “Azure is going to be a really good platform for HPC in the not-to-distant future,” he said.

Also on the docket is that ability to host legacy Windows apps in the cloud (without having to be rejiggered for the native Azure programming framework, that is). So popular applications like Excel will be able to execute on Azure and have access to a very elastic parallel platform. To accomplish this, Azure will have to incorporate VM support for Windows, something it does not currently have. “Once VMs become available, you could conceivably run any application in the cloud,” explained Faenov.

Excel is already halfway to the cloud, inasmuch as the latest HPC server supports a parallelized version of the spreadsheet app for cluster execution. Microsoft estimates they already have 300 million Excel customers, and some of the workbooks they develop are big enough to benefit from a cluster and cloud setup. This is especially true of in the financial services arena where quants build super-sized Excel models for applications like portfolio analysis and options pricing.

At the HPC Financial Markets event, Microsoft demonstrated a 60-fold speedup for an Excel pricing sensitivity workbook when they parallelized a serial version to run on a 500-node cluster. By adding some simple parallel hooks into the workbook to distribute the Excel calculations across the cluster, run time was reduced from two hours to two minutes.

“The reason we’re particularly excited about Excel and HPC is that it truly demonstrates our vision for technical computing,” said Faenov, “which is to bring high performance computing capabilities to more users and bring it into new markets beyond traditional HPC.”

Splicing all the parallel computing technologies under the Microsoft umbrella into a coherent-looking whole would be quite a coup for the software maker. As it stands today, clients, clusters and clouds operate more or less in their own worlds. A Hadoop or MapReduce application in the cloud or in a Linux cluster is going to be very different from its implementation on a client. Yet fundamentally, they’re all going to be parallelized in a similar fashion.

“As we pass through this inflection point, as we have to start writing software in a new way… it requires the entire technology industry to have a sea change in the way they think about computational problems,” said Hilf. “We must think of all things in a parallel way.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This