Company Offers a New Way to Parallelize Applications

By Michael Feldman

September 30, 2010

Startups always begin with big ambitions and Massively Parallel Technologies (MPT) is no exception. This week, the company unveiled “Blue Cheetah,” which is described as a “total application ecosystem” that aims to revolutionize the traditional software development and distribution model, especially for highly parallel codes. The idea is to turbo-charge the ROI model by automating the application development process, bringing software to market faster, and making it widely reusable.

MPT is not exactly a startup, though. The Colorado-based company has been around since 2000, and is on its third CEO. The first two, company founder Scott Smith and HPC luminary John Gustafson, are now on the board of directors. Former Linux Networx exec Bobbi Hazard is the current CEO and will oversee the reboot of MPT as it rolls out the Blue Cheetah suite of tools. Kevin Howard, the CTO, who has been with the company since its inception, has driven the technical innovation behind the products, especially in regard to the parallelization techniques.

During the company’s early years, MPT offered BLAST-based bioinformatics products and services, based on the company’s “HOWARD” technology. Using some of that early work, as well as additional development performed under a DARPA HPCS program contract, the company developed a new parallel communication technology that Hazard claims is “a huge improvement over MPI and PVM.” According to her, more than half of their 400-plus patent filings are based on this area of the technology.

But Blue Cheetah extends far beyond its novel communication scheme. It encompasses the whole software lifecycle, from design, testing, and development to deployment, licensing and revenue distribution. As Hazard puts it: “Usually you get one set of products to do one thing and another set of products to do another,” says Hazard. “I don’t know of anywhere else where you can get them all together.”

Not all of this is available today, though. What MPT announced this week is a beta version of Blue Cheetah’s software development platform, called Cub. With it, developers can design and develop applications, as well as share code with others in a collaborative fashion. Cub also automatically generates application documentation based on the design. The output from this tool is an executable that can run in a uni-processor environment. If parallelization is desired, that is performed separately further down the toolchain.

The key to Blue Cheetah software development is teasing out an application’s fundamental process elements, which they call kernels, from the control functions. Basically, the idea is to separate the math from the program control logic. During design, the system translates the developer’s kernel specifications directly into executable code. This is not revolutionary in itself; pseudcode-to-code translation has been done with varying degrees of success for decades. In this case though, there is no intermediary programming language like C or Fortran to deal with. The design itself represents the program source.

The control functions encompass the if-then-else and looping constructs that wrap around the kernel invocations. Conveniently, Cub automatically generate all the control functionality itself, again, based on the original design. This functional decomposition not only frees the developer from maintaining any of the control software, it also removes the dependency of the kernel algorithms on the underlying hardware and subsequent parallelization schemes.

Another important side effect to this decomposition is that the algorithms are easier to share among applications. Code reuse is a core element of MPT’s software monetization scheme, and during the design phase, the system points the developer to existing kernels that may apply to his or her application. Matches are based on keyword searches, input/output parameters, dataset similarities, and so on. Anything from an individual FFT algorithm to a complete application library can be shared across applications, taking with it the licensing agreement associated with the original code. The choice of reusing existing kernels versus designing new ones is up to the developer, though.

Once the application design is complete, its licensing is set up. The developer determines the fee structure and sets up the payment scheme for their own code. Blue Cheetah offers both a pay-per-use model and a more traditional licensing model. The intention is to offer applications on-demand via their own 256-node “cloud” cluster, but MPT will also license Blue Cheetah to customers who want to take the whole system in-house.

If kernels are reused in multiple applications, the original developers will get paid for each instance of use. It’s essentially the opposite of the open source licensing model. MPT is hoping to attract both commercial and academic developers, especially those frustrated by the “free software” business model. “A whole ecosystem will be formulated over time, and get larger as more kernels and algorithms become available,” says Hazard.

Blue Cheetah includes special capabilities to help developers parallelize their applications across the multicore/multiprocessor/cluster/grid/cloud computing landscape. That certainly covers high performance computing, but all software applications that require a large-scale computing infrastructure (e.g., cloud computing, business analytics, math-intensive applications, etc.) are fair game. Hazard says they have had early interest from organizations who develop nanotech, biotech and multi-player gaming applications.

Parallelizing applications will be performed by the upcoming Blue Cheetah product called Coalition, which is scheduled for release in the January 2011 timeframe. The tool will take the code developed under Cub and automatically restructure it in such a way as to maximize parallelism, be it for multicore platforms or clusters. How it actually accomplishes this is not clear, although an auto-parallelization feature that bypasses MPI and promises better performance should pique the interest of HPC developers.

Further down the road, a separate product called Savannah will also be available to put a Blue Cheetah app into firmware. This is targeted at users who want maximum performance or are running the types of embedded applications that requires the application to be executed locally.

Another future Blue Cheetah tool, called Spots, will consume existing source code and perform process-control decomposition so that it can be fed into the Cub platform. Once in the system, the application can go through the rest of the Blue Cheetah toolchain, including auto-parallelization. How this code transformation occurs, and what types of source code are deemed consumable, is not defined, but Hazard implied that even legacy MPI codes could be restructured by Spots. This tool also checks incoming code for malware and plagiarism.

Redefining the software development ecosystem is certainly a lot for one small company to take on. MPT has no venture capital money behind it. But the company has attracted a large number of angel investors to fund the Blue Cheetah development.

They’ve also managed to catch the attention of Gene Amdahl, a computer science icon who developed Amdahl’s law of software parallelism. He is on MPT’s board of advisors and appears to be thoroughly impressed by the Blue Cheetah products. In a video on MPT’s website, he talks about the importance of parallel computing and the opportunity afforded by the company’s technology. “It will revolutionize the world of computing,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This