Company Offers a New Way to Parallelize Applications

By Michael Feldman

September 30, 2010

Startups always begin with big ambitions and Massively Parallel Technologies (MPT) is no exception. This week, the company unveiled “Blue Cheetah,” which is described as a “total application ecosystem” that aims to revolutionize the traditional software development and distribution model, especially for highly parallel codes. The idea is to turbo-charge the ROI model by automating the application development process, bringing software to market faster, and making it widely reusable.

MPT is not exactly a startup, though. The Colorado-based company has been around since 2000, and is on its third CEO. The first two, company founder Scott Smith and HPC luminary John Gustafson, are now on the board of directors. Former Linux Networx exec Bobbi Hazard is the current CEO and will oversee the reboot of MPT as it rolls out the Blue Cheetah suite of tools. Kevin Howard, the CTO, who has been with the company since its inception, has driven the technical innovation behind the products, especially in regard to the parallelization techniques.

During the company’s early years, MPT offered BLAST-based bioinformatics products and services, based on the company’s “HOWARD” technology. Using some of that early work, as well as additional development performed under a DARPA HPCS program contract, the company developed a new parallel communication technology that Hazard claims is “a huge improvement over MPI and PVM.” According to her, more than half of their 400-plus patent filings are based on this area of the technology.

But Blue Cheetah extends far beyond its novel communication scheme. It encompasses the whole software lifecycle, from design, testing, and development to deployment, licensing and revenue distribution. As Hazard puts it: “Usually you get one set of products to do one thing and another set of products to do another,” says Hazard. “I don’t know of anywhere else where you can get them all together.”

Not all of this is available today, though. What MPT announced this week is a beta version of Blue Cheetah’s software development platform, called Cub. With it, developers can design and develop applications, as well as share code with others in a collaborative fashion. Cub also automatically generates application documentation based on the design. The output from this tool is an executable that can run in a uni-processor environment. If parallelization is desired, that is performed separately further down the toolchain.

The key to Blue Cheetah software development is teasing out an application’s fundamental process elements, which they call kernels, from the control functions. Basically, the idea is to separate the math from the program control logic. During design, the system translates the developer’s kernel specifications directly into executable code. This is not revolutionary in itself; pseudcode-to-code translation has been done with varying degrees of success for decades. In this case though, there is no intermediary programming language like C or Fortran to deal with. The design itself represents the program source.

The control functions encompass the if-then-else and looping constructs that wrap around the kernel invocations. Conveniently, Cub automatically generate all the control functionality itself, again, based on the original design. This functional decomposition not only frees the developer from maintaining any of the control software, it also removes the dependency of the kernel algorithms on the underlying hardware and subsequent parallelization schemes.

Another important side effect to this decomposition is that the algorithms are easier to share among applications. Code reuse is a core element of MPT’s software monetization scheme, and during the design phase, the system points the developer to existing kernels that may apply to his or her application. Matches are based on keyword searches, input/output parameters, dataset similarities, and so on. Anything from an individual FFT algorithm to a complete application library can be shared across applications, taking with it the licensing agreement associated with the original code. The choice of reusing existing kernels versus designing new ones is up to the developer, though.

Once the application design is complete, its licensing is set up. The developer determines the fee structure and sets up the payment scheme for their own code. Blue Cheetah offers both a pay-per-use model and a more traditional licensing model. The intention is to offer applications on-demand via their own 256-node “cloud” cluster, but MPT will also license Blue Cheetah to customers who want to take the whole system in-house.

If kernels are reused in multiple applications, the original developers will get paid for each instance of use. It’s essentially the opposite of the open source licensing model. MPT is hoping to attract both commercial and academic developers, especially those frustrated by the “free software” business model. “A whole ecosystem will be formulated over time, and get larger as more kernels and algorithms become available,” says Hazard.

Blue Cheetah includes special capabilities to help developers parallelize their applications across the multicore/multiprocessor/cluster/grid/cloud computing landscape. That certainly covers high performance computing, but all software applications that require a large-scale computing infrastructure (e.g., cloud computing, business analytics, math-intensive applications, etc.) are fair game. Hazard says they have had early interest from organizations who develop nanotech, biotech and multi-player gaming applications.

Parallelizing applications will be performed by the upcoming Blue Cheetah product called Coalition, which is scheduled for release in the January 2011 timeframe. The tool will take the code developed under Cub and automatically restructure it in such a way as to maximize parallelism, be it for multicore platforms or clusters. How it actually accomplishes this is not clear, although an auto-parallelization feature that bypasses MPI and promises better performance should pique the interest of HPC developers.

Further down the road, a separate product called Savannah will also be available to put a Blue Cheetah app into firmware. This is targeted at users who want maximum performance or are running the types of embedded applications that requires the application to be executed locally.

Another future Blue Cheetah tool, called Spots, will consume existing source code and perform process-control decomposition so that it can be fed into the Cub platform. Once in the system, the application can go through the rest of the Blue Cheetah toolchain, including auto-parallelization. How this code transformation occurs, and what types of source code are deemed consumable, is not defined, but Hazard implied that even legacy MPI codes could be restructured by Spots. This tool also checks incoming code for malware and plagiarism.

Redefining the software development ecosystem is certainly a lot for one small company to take on. MPT has no venture capital money behind it. But the company has attracted a large number of angel investors to fund the Blue Cheetah development.

They’ve also managed to catch the attention of Gene Amdahl, a computer science icon who developed Amdahl’s law of software parallelism. He is on MPT’s board of advisors and appears to be thoroughly impressed by the Blue Cheetah products. In a video on MPT’s website, he talks about the importance of parallel computing and the opportunity afforded by the company’s technology. “It will revolutionize the world of computing,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This