Company Offers a New Way to Parallelize Applications

By Michael Feldman

September 30, 2010

Startups always begin with big ambitions and Massively Parallel Technologies (MPT) is no exception. This week, the company unveiled “Blue Cheetah,” which is described as a “total application ecosystem” that aims to revolutionize the traditional software development and distribution model, especially for highly parallel codes. The idea is to turbo-charge the ROI model by automating the application development process, bringing software to market faster, and making it widely reusable.

MPT is not exactly a startup, though. The Colorado-based company has been around since 2000, and is on its third CEO. The first two, company founder Scott Smith and HPC luminary John Gustafson, are now on the board of directors. Former Linux Networx exec Bobbi Hazard is the current CEO and will oversee the reboot of MPT as it rolls out the Blue Cheetah suite of tools. Kevin Howard, the CTO, who has been with the company since its inception, has driven the technical innovation behind the products, especially in regard to the parallelization techniques.

During the company’s early years, MPT offered BLAST-based bioinformatics products and services, based on the company’s “HOWARD” technology. Using some of that early work, as well as additional development performed under a DARPA HPCS program contract, the company developed a new parallel communication technology that Hazard claims is “a huge improvement over MPI and PVM.” According to her, more than half of their 400-plus patent filings are based on this area of the technology.

But Blue Cheetah extends far beyond its novel communication scheme. It encompasses the whole software lifecycle, from design, testing, and development to deployment, licensing and revenue distribution. As Hazard puts it: “Usually you get one set of products to do one thing and another set of products to do another,” says Hazard. “I don’t know of anywhere else where you can get them all together.”

Not all of this is available today, though. What MPT announced this week is a beta version of Blue Cheetah’s software development platform, called Cub. With it, developers can design and develop applications, as well as share code with others in a collaborative fashion. Cub also automatically generates application documentation based on the design. The output from this tool is an executable that can run in a uni-processor environment. If parallelization is desired, that is performed separately further down the toolchain.

The key to Blue Cheetah software development is teasing out an application’s fundamental process elements, which they call kernels, from the control functions. Basically, the idea is to separate the math from the program control logic. During design, the system translates the developer’s kernel specifications directly into executable code. This is not revolutionary in itself; pseudcode-to-code translation has been done with varying degrees of success for decades. In this case though, there is no intermediary programming language like C or Fortran to deal with. The design itself represents the program source.

The control functions encompass the if-then-else and looping constructs that wrap around the kernel invocations. Conveniently, Cub automatically generate all the control functionality itself, again, based on the original design. This functional decomposition not only frees the developer from maintaining any of the control software, it also removes the dependency of the kernel algorithms on the underlying hardware and subsequent parallelization schemes.

Another important side effect to this decomposition is that the algorithms are easier to share among applications. Code reuse is a core element of MPT’s software monetization scheme, and during the design phase, the system points the developer to existing kernels that may apply to his or her application. Matches are based on keyword searches, input/output parameters, dataset similarities, and so on. Anything from an individual FFT algorithm to a complete application library can be shared across applications, taking with it the licensing agreement associated with the original code. The choice of reusing existing kernels versus designing new ones is up to the developer, though.

Once the application design is complete, its licensing is set up. The developer determines the fee structure and sets up the payment scheme for their own code. Blue Cheetah offers both a pay-per-use model and a more traditional licensing model. The intention is to offer applications on-demand via their own 256-node “cloud” cluster, but MPT will also license Blue Cheetah to customers who want to take the whole system in-house.

If kernels are reused in multiple applications, the original developers will get paid for each instance of use. It’s essentially the opposite of the open source licensing model. MPT is hoping to attract both commercial and academic developers, especially those frustrated by the “free software” business model. “A whole ecosystem will be formulated over time, and get larger as more kernels and algorithms become available,” says Hazard.

Blue Cheetah includes special capabilities to help developers parallelize their applications across the multicore/multiprocessor/cluster/grid/cloud computing landscape. That certainly covers high performance computing, but all software applications that require a large-scale computing infrastructure (e.g., cloud computing, business analytics, math-intensive applications, etc.) are fair game. Hazard says they have had early interest from organizations who develop nanotech, biotech and multi-player gaming applications.

Parallelizing applications will be performed by the upcoming Blue Cheetah product called Coalition, which is scheduled for release in the January 2011 timeframe. The tool will take the code developed under Cub and automatically restructure it in such a way as to maximize parallelism, be it for multicore platforms or clusters. How it actually accomplishes this is not clear, although an auto-parallelization feature that bypasses MPI and promises better performance should pique the interest of HPC developers.

Further down the road, a separate product called Savannah will also be available to put a Blue Cheetah app into firmware. This is targeted at users who want maximum performance or are running the types of embedded applications that requires the application to be executed locally.

Another future Blue Cheetah tool, called Spots, will consume existing source code and perform process-control decomposition so that it can be fed into the Cub platform. Once in the system, the application can go through the rest of the Blue Cheetah toolchain, including auto-parallelization. How this code transformation occurs, and what types of source code are deemed consumable, is not defined, but Hazard implied that even legacy MPI codes could be restructured by Spots. This tool also checks incoming code for malware and plagiarism.

Redefining the software development ecosystem is certainly a lot for one small company to take on. MPT has no venture capital money behind it. But the company has attracted a large number of angel investors to fund the Blue Cheetah development.

They’ve also managed to catch the attention of Gene Amdahl, a computer science icon who developed Amdahl’s law of software parallelism. He is on MPT’s board of advisors and appears to be thoroughly impressed by the Blue Cheetah products. In a video on MPT’s website, he talks about the importance of parallel computing and the opportunity afforded by the company’s technology. “It will revolutionize the world of computing,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This