Company Offers a New Way to Parallelize Applications

By Michael Feldman

September 30, 2010

Startups always begin with big ambitions and Massively Parallel Technologies (MPT) is no exception. This week, the company unveiled “Blue Cheetah,” which is described as a “total application ecosystem” that aims to revolutionize the traditional software development and distribution model, especially for highly parallel codes. The idea is to turbo-charge the ROI model by automating the application development process, bringing software to market faster, and making it widely reusable.

MPT is not exactly a startup, though. The Colorado-based company has been around since 2000, and is on its third CEO. The first two, company founder Scott Smith and HPC luminary John Gustafson, are now on the board of directors. Former Linux Networx exec Bobbi Hazard is the current CEO and will oversee the reboot of MPT as it rolls out the Blue Cheetah suite of tools. Kevin Howard, the CTO, who has been with the company since its inception, has driven the technical innovation behind the products, especially in regard to the parallelization techniques.

During the company’s early years, MPT offered BLAST-based bioinformatics products and services, based on the company’s “HOWARD” technology. Using some of that early work, as well as additional development performed under a DARPA HPCS program contract, the company developed a new parallel communication technology that Hazard claims is “a huge improvement over MPI and PVM.” According to her, more than half of their 400-plus patent filings are based on this area of the technology.

But Blue Cheetah extends far beyond its novel communication scheme. It encompasses the whole software lifecycle, from design, testing, and development to deployment, licensing and revenue distribution. As Hazard puts it: “Usually you get one set of products to do one thing and another set of products to do another,” says Hazard. “I don’t know of anywhere else where you can get them all together.”

Not all of this is available today, though. What MPT announced this week is a beta version of Blue Cheetah’s software development platform, called Cub. With it, developers can design and develop applications, as well as share code with others in a collaborative fashion. Cub also automatically generates application documentation based on the design. The output from this tool is an executable that can run in a uni-processor environment. If parallelization is desired, that is performed separately further down the toolchain.

The key to Blue Cheetah software development is teasing out an application’s fundamental process elements, which they call kernels, from the control functions. Basically, the idea is to separate the math from the program control logic. During design, the system translates the developer’s kernel specifications directly into executable code. This is not revolutionary in itself; pseudcode-to-code translation has been done with varying degrees of success for decades. In this case though, there is no intermediary programming language like C or Fortran to deal with. The design itself represents the program source.

The control functions encompass the if-then-else and looping constructs that wrap around the kernel invocations. Conveniently, Cub automatically generate all the control functionality itself, again, based on the original design. This functional decomposition not only frees the developer from maintaining any of the control software, it also removes the dependency of the kernel algorithms on the underlying hardware and subsequent parallelization schemes.

Another important side effect to this decomposition is that the algorithms are easier to share among applications. Code reuse is a core element of MPT’s software monetization scheme, and during the design phase, the system points the developer to existing kernels that may apply to his or her application. Matches are based on keyword searches, input/output parameters, dataset similarities, and so on. Anything from an individual FFT algorithm to a complete application library can be shared across applications, taking with it the licensing agreement associated with the original code. The choice of reusing existing kernels versus designing new ones is up to the developer, though.

Once the application design is complete, its licensing is set up. The developer determines the fee structure and sets up the payment scheme for their own code. Blue Cheetah offers both a pay-per-use model and a more traditional licensing model. The intention is to offer applications on-demand via their own 256-node “cloud” cluster, but MPT will also license Blue Cheetah to customers who want to take the whole system in-house.

If kernels are reused in multiple applications, the original developers will get paid for each instance of use. It’s essentially the opposite of the open source licensing model. MPT is hoping to attract both commercial and academic developers, especially those frustrated by the “free software” business model. “A whole ecosystem will be formulated over time, and get larger as more kernels and algorithms become available,” says Hazard.

Blue Cheetah includes special capabilities to help developers parallelize their applications across the multicore/multiprocessor/cluster/grid/cloud computing landscape. That certainly covers high performance computing, but all software applications that require a large-scale computing infrastructure (e.g., cloud computing, business analytics, math-intensive applications, etc.) are fair game. Hazard says they have had early interest from organizations who develop nanotech, biotech and multi-player gaming applications.

Parallelizing applications will be performed by the upcoming Blue Cheetah product called Coalition, which is scheduled for release in the January 2011 timeframe. The tool will take the code developed under Cub and automatically restructure it in such a way as to maximize parallelism, be it for multicore platforms or clusters. How it actually accomplishes this is not clear, although an auto-parallelization feature that bypasses MPI and promises better performance should pique the interest of HPC developers.

Further down the road, a separate product called Savannah will also be available to put a Blue Cheetah app into firmware. This is targeted at users who want maximum performance or are running the types of embedded applications that requires the application to be executed locally.

Another future Blue Cheetah tool, called Spots, will consume existing source code and perform process-control decomposition so that it can be fed into the Cub platform. Once in the system, the application can go through the rest of the Blue Cheetah toolchain, including auto-parallelization. How this code transformation occurs, and what types of source code are deemed consumable, is not defined, but Hazard implied that even legacy MPI codes could be restructured by Spots. This tool also checks incoming code for malware and plagiarism.

Redefining the software development ecosystem is certainly a lot for one small company to take on. MPT has no venture capital money behind it. But the company has attracted a large number of angel investors to fund the Blue Cheetah development.

They’ve also managed to catch the attention of Gene Amdahl, a computer science icon who developed Amdahl’s law of software parallelism. He is on MPT’s board of advisors and appears to be thoroughly impressed by the Blue Cheetah products. In a video on MPT’s website, he talks about the importance of parallel computing and the opportunity afforded by the company’s technology. “It will revolutionize the world of computing,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This