The iTunes of Algorithms

By Michael Feldman

September 30, 2010

There was a lot of paradigm shifting encapsulated in this week’s introduction of Massively Parallel Technologies’ Blue Cheetah software ecosystem, but one of its more compelling aspects had to do with its software business model. Essentially, MPT is offering an application development and distribution platform via a cloud model, but the actual monetization and protection of the developer’s software is also built into the system.

During the creation of a Blue Cheetah application, the developer builds algorithms and applications and assigns a fee structure around them. Alternatively, they can build applications that reuse existing algorithms in the Blue Cheetah database, but in that case the original developer will get some of the proceeds collected when that application is sold to a customer. The revenue sharing is automatically taken care of every time a piece of code is used.

The take-away here is that none of the software in the Blue Cheetah ecosystem is free. Every time a customer pays for the use of an application, the proceeds are distributed to all the developers associated with it.

This is antithetical to the open source model, in which software is distributed more or less freely to anyone interested. But open source relies on the kindness of strangers, or at least like-minded individuals, to build and maintain a code base. Much of the software stack in high performance computing is based on this model. For example, Linux, Lustre, OpenFabrics Enterprise Distribution, OpenMP, and some implementations of MPI are maintained under open source. The rationale is that you can build better software if you have a community of developers willing to share the effort of creating and maintaining a large code base.

That model works best when the developers are also users (or at least closely aligned with them) and embrace a community spirit where everyone is contributing more or less evenly. That pretty well describes the HPC community, who seem to have a real affinity for free software — not to mention free beer.

The model breaks down when certain groups are using the code base more than they’re contributing, breaking the ethos of the common good. In that case, the contributors are subsidizing the users. Who pays for that? When the developers are working at government-funded universities and research centers, that cost is passed onto taxpayers. When they’re working for commercial firms, the cost of their “free” development is spread out over their customer base.

It’s that kind of false economy that the Blue Cheetah architects wanted to avoid. According to MPT CTO and co-founder Kevin Howard, a free market economy for software is by far the better model. ”If I’m going to spend man-years and millions of dollars to develop software only to have another group essentially duplicate it,” he says, “that greatly decreases the value of work that I’ve done.”

An even more serious problem for the software industry, though, is plagiarism. Today, most commercial software is being pirated to one extent or another. According to Howard, in Asia, over 90 percent of commercial codes have been plagiarized; in Europe it’s over 75 percent; and in the US it’s over half. That puts a lot of pressure on software vendors to continually create new code in order to keep the remaining revenue stream flowing. This is especially tough on small and medium-sized ISVs with limited resources and customer bases.

MPT’s model circumvents plagiarism in a couple of ways. When you import existing code into the Blue Cheetah ecosystem, it checks if it’s plagiarized source (don’t ask me how). The import process transforms the code into Blue Cheetah’s internal representation — essentially the pseudo-code that subsequently drives the executable.

Since Blue Cheetah apps are deployed via a cloud model, nothing is downloaded locally, so there’s nothing to copy. Even if someone could get a hold of the pseudo-code to attempt to reconstruct an executable, they’d also need a copy of the MPT’s finite state machine interpreter in Blue Cheetah’s backend.

If the Blue Cheetah software repository is able to attract some level of critical mass, one could envision a new kind of software marketplace evolving, where individual developers would contribute stand-alone algorithms, rather than full-blown applications. The intent would be to collect licensing fees as their algorithms were incorporated into other peoples’ applications and sold to customers. A competitive market in algorithms could develop. (Who’s got the cheapest/fastest/smallest FFT kernel?). That model would be much more dynamic since application developers could swap algorithms in and out as better versions became available. Sounds like a software market worthy of the 21st century.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This