The Week in Review

By Tiffany Trader

September 30, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

NIST Awards $50M in Grants for the Construction of Five Science Facilities

National Center Presents Strategy to Revitalize US Manufacturing

NSF Funds Computer Systems Research Center at New Mexico Consortium

Pervasive Software Announces Multicore-Ready Pervasive PSQL v11 MC

Mellanox Adapters Support Dell Blade Servers

Three Tiny Qubits, Another Big Step Toward Quantum Computing

Louisiana Optical Network Used to Study Hurricane Effects on Spilled Oil

Study Shows Financial Firms Short On Resources for Analytics Needs

Computer Simulation Aimed at Green Building Design

HP Completes Tender Offer for and Merger of 3PAR

Massively Parallel Technologies Unveils “Blue Cheetah” Software Model

LANL Buys Two SGI Altix XE Clusters

IBM to Acquire BLADE Network Technologies

Pervasive DataRush on SGI Altix Shatters Smith-Waterman Throughput Record by 43 Percent

Sophis Announces Partnership with Platform Computing

Intilop Announces Record Breaking Latency for 10Gb TCP Offload Engine

Fujitsu Starts Building 10 Petaflop Japanese Super

In the Japan/US race for supercomputing prowess, Japan just pulled ahead when Fujitsu announced it had started shipping parts for the next-generation, 10-petaflop “K” supercomputer, to be housed at the RIKEN lab in Kobe, Japan.

The name for the system — “K” — comes from the Japanese word “Kei” for 10^16, the numerical representation for 10 petaflops. The character for “Kei” also connotes a large gateway, symbolizing the system’s potential to be a gateway for scientific process and the benefits it bestows on Japanese society.

The Next Generation Supercomputer project is being jointly developed by the RIKEN research institute and Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT). MEXT’s stated goal for the project? To develop and build the world’s most advanced and powerful next-generation supercomputer. But said supercomputer is not expected to be fully operational until autumn 2012.

If “K” achieves its 10 petaflop goal by 2012, it could take the coveted top position on the TOP500 list, but two years is a long time in the multi-petaflop race, enough time perhaps for one of the current top spot holders (or a new contender) to lay claim to the “world’s best” designation.

When the supercomputer reaches completion, its advanced architecture will consist of more than 800 computer racks containing 80,000 SPARC 64 VIIIfx processors connected by an innovative six-dimensional mesh-torus topology — both the chips and the interconnect were developed by Fujitsu. Each processor sports 128 gigaflops, running at just 2.2 gigaflops per watt — power consumption levels that are two-thirds less than the chips’ predecessors. The system will use water-cooling to enable high-mount densities, extend component life and and reduce failure rates.

It’s interesting to note that “K” may be one of the last big homogeneous (CPU-only) big machines we will see, given the current trend toward heterogeneous computing, using specialized processors, such as GPUs, to achieve speedups beyond the capability of single architecture systems. Prior to the Great Recession, Japan’s Next-Generation Supercomputer was going to employ vector units in addition to the standard scalar CPUs, but those plans were crushed under the wheels of a tanking economy. Final analysis: 10 petaflops is a pretty serious goal for a single-architecture scalar system, hence the need for so many processors (80,000) — a requirement that brings up a host of other challenges, for example, paying for all of them. A Register article does the math:

At a $4,000 a-piece volume street price (what a high-end Itanium or Xeon processor sells for), that would be $320m just for the processors. It is likely that the chips, even at these volumes, cost more than this.

The Reg piece also does a good job reminding us how economic forces almost put the kibosh on the project.

And the awards go to…

It’s that time of year again when a trifecta of big-time awards are announced. The Ken Kennedy Award, the Sidney Fernbach Award, and the Seymour Cray Award recipients have been selected. The awards will be formally presented at SC10 in New Orleans on November 17.

The second annual ACM-IEEE Computer Society Ken Kennedy Award honors Intel Fellow David Kuck for his contributions to compiler technology and parallel computing that have improved the cost-effectiveness of multiprocessor computing. Established in 2009 in honor of the late Ken Kennedy, the award recognizes substantial contributions to programmability and productivity in computing as well as significant community service or mentoring contributions, and carries a $5,000 honorarium. Kuck was also the recipient of the IEEE Piore Award and the 1993 ACM-IEEE Computer Society Eckert-Mauchly Award.

From the announcement:

Kuck’s pioneering techniques are incorporated in every optimizing compiler in use today. His impact spans four decades and embraces a broad range of areas, including architecture design and evaluation, compiler technology, programming languages, and algorithms. During his career, he influenced the design of the Illiac IV, Burroughs BSP, Alliant FX, and Cedar parallel computers. The Kennedy Award also cited him for the widespread inspiration of his teaching and mentoring.

UC Berkeley Professor James Demmel receives the 2010 IEEE Computer Society Sidney Fernbach Award for advances made to high-performance linear algebra software. In memory of high-performance computing pioneer Sidney Fernbach, the award was established in 1992 to recognize outstanding contributions in the application of high-performance computers using innovative approaches. The award consists of a certificate and a $2,000 honorarium.

From the release:

The software and standards Demmel developed enable users to transition their computer programs to new high-performance computers without having to re-implement the basic building blocks. The software is used by hundreds of sites worldwide, including all U.S. Department of Energy national laboratories, NASA research laboratories, many universities, and companies in the aerospace, automotive, chemical, computer, environmental, medical, oil, and pharmaceutical industries.

Last up, the IEEE Computer Society’s prestigious 2010 Seymour Cray Computer Engineering Award goes to IBM’s Dr. Alan Gara for innovations in low power, densely-packaged supercomputing systems. There is no official announcement out yet for the Cray Award, but the winner is listed on the award website. The Seymour Cray Award was established in late 1997 to recognize innovative contributions to high performance computing systems that best exemplify the creative spirit demonstrated by the late Seymour Cray. Honorees are presented with a crystal memento, illuminated certificate, and $10,000 honorarium.

This is not the first time Dr. Gara, chief architect of the BlueGene supercomputer, has been honored for his influential achievements. Gara received the Gordon Bell Prize in 1998 for the QCDOC machine, a custom supercomputer optimized for Quantum Chromodynamics, and he was part of the team that won a 2006 Gordon Bell Prize for Special Achievement for work on The BlueGene/L Supercomputer and Quantum Chromodynamics.

Congratulations to all the recipients!

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This