Bringing Digital Manufacturing to Market

By Nicole Hemsoth

October 6, 2010

Last week in Washington, D.C., the National Center for Manufacturing Sciences (NCMS) and Intersect 360 Research presented the results of a survey based on over 300 manufacturing firms in the United States about the current state of digital manufacturing technologies.  More specifically, the questions were aimed at ultimately identifying the key barriers and drivers for their adoption of complex technologies to drive innovation.

While we will touch on some of the findings of the research and its potential implications in a while, it should come as no surprise that the “missing middle” designation became a key, guiding phrase. Many in the HPC community have already heard this term repeated elsewhere, it is not always a common, understood concept for those who hold the purse strings—namely representatives in the U.S. government, some of whom might not have even been familiar with the broad domain of high-performance computing and the many layers of meaning and technology that comprise it.

 The goal of the research and presentation was to convince government leaders of the inherent value of making high-performance computing software and resources accessible to the manufacturing sector from the bottom up. Without having access to core technologies, particularly in the realm of modeling and simulation, many smaller design and manufacturing shops have a hard time remaining competitive—and we all know what this “trickle up” impact is on the national economy.

Again, chances are you’re well aware of the concept of the missing middle, but let’s take it one step further and enter the realm of manufacturing, HPC and this presumably vast, lost subset of the HPC-denied American economy.

The Digital Manufacturing Angle

The concept of digital manufacturing itself can appear, at first, as a bit too broad or nebulous, in part because from first glance, it implies that the final product is digital in nature or otherwise not tangible enough to apply to something as solid as manufactured products. Digital manufacturing, however, refers to the entire lifecycle of a design or product that was based on the use of advanced computational resources and technologies to deploy simulation and modeling for multiple aspects of the design and development process. As Intersect 360 Research notes, “by creating a digital model of a product, a manufacturer can perform a wide range of tests, such as manufacturability analysis or performance testing, before physically building a new design.” It is in this total solution based on technology that digital manufacturing as a term is best applied.

What this overarching concept of digital manufacturing ultimately means is that companies who feed the manufacturing supply chain are able to improve their final product through refined design and testing efforts and furthermore, many are able to speed the time to market for their products since testing engineered parts or complete products can be time-consuming and expensive.

One of the better ways to think about digital manufacturing is to consider it in the case of a manufacturing firm at the top of the food chain, heavy-equipment maker Caterpillar.

Feeding a Caterpillar

Although not a missing middle company by any stretch of the imagination, providing an overview of how HPC does work for refining the product lifecycle (and the challenges that are present when the HPC absent from it) can almost be better realized via a case study of a company that is thriving versus one of the many missing middles who plod along with legacy systems and 2D rendering software. After all, we know what their challenges are.  But for a massive manufacturer who has both high-end systems yet still occasionally resorts to older, more expensive testing and design methods, we have a more thorough perspective.

Fortune 50 heavy equipment manufacturer Caterpillar’s research program manager for virtual products, Keven Hoftstetter, highlighted the key benefits and challenges of modeling and simulation for the company’s product cycle and bottom line last week during the manufacturing and HPC-related HPC 360 event in Champaign-Urbana, Illinois. The equipment manufacturer is a top-tier user of HPC, thus they certainly do not fall into the “missing middle” that has been clearly defined for the manufacturing sector and includes the smaller firms that support the supply chain that migrates to a summit that would include a company like Caterpillar.

Caterpillar is a company on the bleeding edge of modeling and simulation for manufacturing, both on a software and hardware/GPU level. Caterpillar places significant emphasis on research and development projects to helps refine product development and bring their line of equipment to customer as well as environmental standards. In addition to the core elements of their manufacturing business, they also house other broad divisions handling equipment financing, logistics, and remanufacturing/rebuilding.

As one might imagine, Caterpillar’s needs go far beyond modeling or simulating the machine functions since there are many parts that are required in advance, all of which much operate a peak performance, both individually and inside the specific machine. Accordingly, research and development at Caterpillar is the backbone of profitability on the micro level (testing pistons, for instance) to the macro level (making sure an earth moving vehicle performs on target).

While Caterpillar’s basic product cycle model is the same as many other manufacturing companies (concept; design, then on to the build and test phase, and finally the production phase) the products that they are developing and testing are on the massive scale. It is not feasible to build giant centers to house and test the actual prototypes in a repeated, 24×7 manner as they have been doing before taking advantage of simulation to handle their design and test process. Hoftstetter noted that they built a 10-acre facility to test their earth moving equipment but if they had to continue to build out centers like this they would be unable to compete.

Caterpillar also devotes a significant amount of time and resources into the many parts and components that are critical to their earth moving equipment. For instance, Hofstetter noted that since they are a leader in diesel and natural gas engines and industrial gas turbines a great deal of their research and development efforts are related to computational fluid dynamics and combustion system interaction.

Since it would not be viable for a company like Caterpillar, who sits at the top of the supply chain and has far more resources to continue to competitively develop and test its products without sophisticated modeling and simulation software and the resources required to power it, why would it make sense to think that smaller companies who help drive Caterpillar by providing components of its larger parts and final products can scavenge enough resources?

Since it all feeds into the top, if there could be a way to empower those at the lower end of the supply chain, let’s say a small engine parts maker for Caterpillar, why wouldn’t it make sense to encourage this? Let’s say for example this small, hypothetical parts design and manufacturing company could deliver high-quality products at a lower cost to Caterpillar, all due to a dramatic reduction in development and time-to-market periods because of the boost of added HPC capacity or even first-time HPC software and resource capability?

This is what lies at the heart of all of these “missing middle” debates, yet still there are no answers on how to best reach out to these smaller providers of manufactured designs and products when all they really need are the resources. And as you know, these are some very expensive resources we’re talking about here.

While HPC on demand providers are putting themselves forward as the next best thing to an in-house cluster, there are still hefty software license issues to contend with that will still drive up the cost. On the other but related side, there are cloud services providers boasting superior services with a performance hit that won’t (they will promise) be dramatic.

While nothing seems to appeal to most quite like the good old workstation for modeling and simulation tasks and since the GPU revolution is still just in its infancy in terms of HPC resource providers with affordable solutions, one has to wonder how much longer this missing middle in manufacturing will remain lost.

Research in Context

So let’s get back to the Intersect 360 and NCMS research that started this whole conversation in the first place. Actually, let’s back way up…

What is rather unique about the study was that the 321 respondents were not told that the survey had anything to do with HPC. As Addison Snell noted during a presentation similar to the one he gave in conjunction with NCMS in Washington, D.C. the day before, in order to take care of the sticky issue of sample bias, the focus was on technology as a general concept versus the far narrower HPC distinction.

This does mark the study as different from several others that have emerged that are distinctly related to high-performance computing. However, if potential respondents were asked to take the survey, even if there was the possibility of marking an answer “we do not currently use HPC,” they might be far less likely to objectively consider the questions.

As it stands, 80% of the respondents came from the industrial or commercial manufacturing space (with the remaining 20% in supporting roles in academia, trade organizations and the public sector) and those on the commercial end of the spectrum were asked additional questions related to product design and development and to what extent they were deploying available high-end technologies to aid in their efforts, among other related questions. 

While the above numbers will do you far more good if you take time to unravel some of the study’s finer points (and the important elements have only been hinted at–there are a number of sub-issues) about the distribution of opinions about securing access to advanced technologies (don’t call them HPC resources if that makes it more palatable, of course) the main point is that there is a combination of general resistance and lack of insight about how these technologies can be leveraged (and to what benefit) for those in that missing middle of manufacturing.

What the research found was that “there is potential, untapped benefit to digital manufacturing technology usage among U.S. manufacturers, particularly small to mid-sized manufacturers. For these companies to get over the hurdles inherent to adoption of advanced technologies, they will seek partners and programs that mitigate risk and help defray costs so they can make investments required to improve their competitiveness technologically.”

Still, what gives some pause is to consider the inferior technology that is driving many manufacturers feeding the supply chain. If we see Caterpillar as a representative example of the power of having access to modeling and simulation, except of the vast scale, it’s pertinent to apply the example of them building a 10-acre facility to test pre-built testable equipment to run constantly for days on end when software might have taken over the task.”

Although companies further down the supply chain don’t have the same sized products or design challenges, this example reverberates—when scaled down, what many of these smaller companies are doing is the cost, time, and resource equivalent of the 10-acre test lot.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This