Three Years On, GPU Computing Is Coming of Age

By Michael Feldman

October 7, 2010

If you’ve been reading this publication for any length of time, I’m sure you’ve noticed how much ink has been spilled on NVIDIA’s GPU computing business. The reason for that is simple: general-purpose GPU (GPGPU) computing has become a technology disrupter in HPC, and NVIDIA is the company driving it. And if you followed our recent coverage of the GPU Technology Conference (GTC) in September, you’ll get a pretty good idea of why and how this is happening.

But the technology, and especially the business, is still in its early stages. It was only in June of 2007 that NVIDIA announced its first Tesla GPU products for technical computing. Although AMD pushed its GPU FireStream products into market that same year, it is NVIDIA that has set the pace in this market. At GTC, I got a chance to talk with Andy Keane, who has headed NVIDIA’s Tesla unit since its inception. During our conversation, he offered his perspective on how the company’s GPU computing business unfolded over the past three years.

The first question I asked him was if the Tesla business was where he thought it would be when they began three years ago. Although he’s been at the center of the storm, so to speak, Keane said that even he is a bit surprised at how far the technology has come in such a short amount of time. “I felt we pushed the GPU faster than I had expected,” he admitted.

He credits a lot of this to the enthusiasm of the developer and user community.The high-end features coalesced in the current Fermi generation, like support for ECC memory and serious double-precision performance, were always on the roadmap, he said. They were just put in ahead of schedule because the community was asking for them.

The first-ever Tesla GPU-equipped cluster was shipped to the Max Planck Institute in 2008 to support Professor Holger Stark’s work in understanding the 3D structure of “macromolecules.” Stark had been using GeForce GPUs for awhile, but he wanted to scale his work to a cluster to speed up the image processing. Later that year, the first deployment of the next-generation Teslas (the 10-series GPUs), was undertaken at Tokyo Tech. Those GPUs, in this case, 170 S1070 Tesla servers, were folded into the TSUBAME 1.2 system. That machine became the first GPU-equipped supercomputer on the TOP500 list.

More Tesla cluster deployments followed. According to Keane, these larger deployments suggested the world needed ECC support and a lot more double precision — features required by large-scale scientific computing. Customers also needed more sophisticated CUDA driver software to optimize the CPU-GPU interface. “So the people you’re selling to influence the type of features you put in the GPU and the software,” Keane said.

In that sense, NVIDIA sees itself more as a catalyst for the community, rather than a market leader, per se. It’s certainly conceivable that some company is going to make more money from products based on NVIDIA’s GPGPUs than NVIDIA itself. Beyond straight HPC, GPU computing is now being employed in everything from computer vision to business intelligence. Like the CPU, the GPU is now in that territory where developers are adapting to the chip, rather than the other way around.

“We could not have written the list of applications that are here at GTC,” Keane told me. “Some are obvious, like pattern recognition and graphics. But things like neuron research? We wouldn’t have come up with that. So there are areas we’re going into because of the creativity of the developer.”

NVIDIA is counting on its next two generations of GPUs — Kepler and Maxwell — to keep the momentum going. Although new GPU computing features are in the offing for these architectures, there is going to be a concerted focus on energy efficiency. Although GPUs already have an enviable FLOPS/watt ratio, system vendors can’t accommodate devices that are more power-hungry than the current crop of chips. Fermi Teslas are rated at 225 watts today, which is frankly more than most server makers are comfortable with. So like its CPU competition, NVIDIA will be compelled to bring out more powerful devices in the same (or lower) thermal envelop.

For supercomputing, this is going to be a critical feature, especially for those counting on GPGPUs as a path to exascale. According to Keane (but not only him), delivering a 1,000-fold performance improvement over today’s computers cannot be achieved with the old techniques — certainly not with transistor and voltage scaling, and probably not with x86 manycore. The route to faster computers will be accomplished indirectly through lower power, which will translate into more parallelism, said Keane.

But achieving that level of parallelism on a conventional CPU is a lot trickier than doing it on a GPU. NVIDIA Chief Scientist Bill Dally is convinced the GPU architecture is inherently superior in delivering more FLOPS/watt than general-purpose CPUs and has even sketched a path to exascale based on extrapolations of GPU technology.

Technology aside, there’s still the question of how NVIDIA is going to make the business model work for HPC. Keane admitted that his Tesla business wouldn’t be viable as a stand-alone company. Given the cost of semiconductor design and the rest of the infrastructure need to support processor development, you need a broad product base, he said. A $2,000 Tesla device would probably cost $10,000 if you factored in all the overhead costs. You just have to look to now-defunct ClearSpeed to see the folly of such a business model.

The way NVIDIA makes this work is to amortize the R&D costs over a much larger product set, in this case the GeForce and Quadro offerings. (The Tegra products use a somewhat different set of technologies.) Tesla is designed as a higher end product, with more cores, more floating point performance, and ECC support. The consumer side needs those things. But since all three units are able to share design and development, Keane can extract his HPC goodies. “AMD has that model, Intel has that model, now NVIDIA has that model,” he said.

But that doesn’t mean the company is content to see the Teslas remain a niche business. Far from it. Keane envisions a volume market for his high-end GPUs beyond strict high performance computing. For example, computers running air traffic control, Internet traffic, and billing systems for a telecom can all benefit from the data parallel muscle of a GPU. Although mostly invisible, these “infrastructure” computers form the backbone of many IT businesses, not to mention the government. “The real volume market for a product like Tesla is in the computers you don’t see,” said Keane.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This