Three Years On, GPU Computing Is Coming of Age

By Michael Feldman

October 7, 2010

If you’ve been reading this publication for any length of time, I’m sure you’ve noticed how much ink has been spilled on NVIDIA’s GPU computing business. The reason for that is simple: general-purpose GPU (GPGPU) computing has become a technology disrupter in HPC, and NVIDIA is the company driving it. And if you followed our recent coverage of the GPU Technology Conference (GTC) in September, you’ll get a pretty good idea of why and how this is happening.

But the technology, and especially the business, is still in its early stages. It was only in June of 2007 that NVIDIA announced its first Tesla GPU products for technical computing. Although AMD pushed its GPU FireStream products into market that same year, it is NVIDIA that has set the pace in this market. At GTC, I got a chance to talk with Andy Keane, who has headed NVIDIA’s Tesla unit since its inception. During our conversation, he offered his perspective on how the company’s GPU computing business unfolded over the past three years.

The first question I asked him was if the Tesla business was where he thought it would be when they began three years ago. Although he’s been at the center of the storm, so to speak, Keane said that even he is a bit surprised at how far the technology has come in such a short amount of time. “I felt we pushed the GPU faster than I had expected,” he admitted.

He credits a lot of this to the enthusiasm of the developer and user community.The high-end features coalesced in the current Fermi generation, like support for ECC memory and serious double-precision performance, were always on the roadmap, he said. They were just put in ahead of schedule because the community was asking for them.

The first-ever Tesla GPU-equipped cluster was shipped to the Max Planck Institute in 2008 to support Professor Holger Stark’s work in understanding the 3D structure of “macromolecules.” Stark had been using GeForce GPUs for awhile, but he wanted to scale his work to a cluster to speed up the image processing. Later that year, the first deployment of the next-generation Teslas (the 10-series GPUs), was undertaken at Tokyo Tech. Those GPUs, in this case, 170 S1070 Tesla servers, were folded into the TSUBAME 1.2 system. That machine became the first GPU-equipped supercomputer on the TOP500 list.

More Tesla cluster deployments followed. According to Keane, these larger deployments suggested the world needed ECC support and a lot more double precision — features required by large-scale scientific computing. Customers also needed more sophisticated CUDA driver software to optimize the CPU-GPU interface. “So the people you’re selling to influence the type of features you put in the GPU and the software,” Keane said.

In that sense, NVIDIA sees itself more as a catalyst for the community, rather than a market leader, per se. It’s certainly conceivable that some company is going to make more money from products based on NVIDIA’s GPGPUs than NVIDIA itself. Beyond straight HPC, GPU computing is now being employed in everything from computer vision to business intelligence. Like the CPU, the GPU is now in that territory where developers are adapting to the chip, rather than the other way around.

“We could not have written the list of applications that are here at GTC,” Keane told me. “Some are obvious, like pattern recognition and graphics. But things like neuron research? We wouldn’t have come up with that. So there are areas we’re going into because of the creativity of the developer.”

NVIDIA is counting on its next two generations of GPUs — Kepler and Maxwell — to keep the momentum going. Although new GPU computing features are in the offing for these architectures, there is going to be a concerted focus on energy efficiency. Although GPUs already have an enviable FLOPS/watt ratio, system vendors can’t accommodate devices that are more power-hungry than the current crop of chips. Fermi Teslas are rated at 225 watts today, which is frankly more than most server makers are comfortable with. So like its CPU competition, NVIDIA will be compelled to bring out more powerful devices in the same (or lower) thermal envelop.

For supercomputing, this is going to be a critical feature, especially for those counting on GPGPUs as a path to exascale. According to Keane (but not only him), delivering a 1,000-fold performance improvement over today’s computers cannot be achieved with the old techniques — certainly not with transistor and voltage scaling, and probably not with x86 manycore. The route to faster computers will be accomplished indirectly through lower power, which will translate into more parallelism, said Keane.

But achieving that level of parallelism on a conventional CPU is a lot trickier than doing it on a GPU. NVIDIA Chief Scientist Bill Dally is convinced the GPU architecture is inherently superior in delivering more FLOPS/watt than general-purpose CPUs and has even sketched a path to exascale based on extrapolations of GPU technology.

Technology aside, there’s still the question of how NVIDIA is going to make the business model work for HPC. Keane admitted that his Tesla business wouldn’t be viable as a stand-alone company. Given the cost of semiconductor design and the rest of the infrastructure need to support processor development, you need a broad product base, he said. A $2,000 Tesla device would probably cost $10,000 if you factored in all the overhead costs. You just have to look to now-defunct ClearSpeed to see the folly of such a business model.

The way NVIDIA makes this work is to amortize the R&D costs over a much larger product set, in this case the GeForce and Quadro offerings. (The Tegra products use a somewhat different set of technologies.) Tesla is designed as a higher end product, with more cores, more floating point performance, and ECC support. The consumer side needs those things. But since all three units are able to share design and development, Keane can extract his HPC goodies. “AMD has that model, Intel has that model, now NVIDIA has that model,” he said.

But that doesn’t mean the company is content to see the Teslas remain a niche business. Far from it. Keane envisions a volume market for his high-end GPUs beyond strict high performance computing. For example, computers running air traffic control, Internet traffic, and billing systems for a telecom can all benefit from the data parallel muscle of a GPU. Although mostly invisible, these “infrastructure” computers form the backbone of many IT businesses, not to mention the government. “The real volume market for a product like Tesla is in the computers you don’t see,” said Keane.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This