Three Years On, GPU Computing Is Coming of Age

By Michael Feldman

October 7, 2010

If you’ve been reading this publication for any length of time, I’m sure you’ve noticed how much ink has been spilled on NVIDIA’s GPU computing business. The reason for that is simple: general-purpose GPU (GPGPU) computing has become a technology disrupter in HPC, and NVIDIA is the company driving it. And if you followed our recent coverage of the GPU Technology Conference (GTC) in September, you’ll get a pretty good idea of why and how this is happening.

But the technology, and especially the business, is still in its early stages. It was only in June of 2007 that NVIDIA announced its first Tesla GPU products for technical computing. Although AMD pushed its GPU FireStream products into market that same year, it is NVIDIA that has set the pace in this market. At GTC, I got a chance to talk with Andy Keane, who has headed NVIDIA’s Tesla unit since its inception. During our conversation, he offered his perspective on how the company’s GPU computing business unfolded over the past three years.

The first question I asked him was if the Tesla business was where he thought it would be when they began three years ago. Although he’s been at the center of the storm, so to speak, Keane said that even he is a bit surprised at how far the technology has come in such a short amount of time. “I felt we pushed the GPU faster than I had expected,” he admitted.

He credits a lot of this to the enthusiasm of the developer and user community.The high-end features coalesced in the current Fermi generation, like support for ECC memory and serious double-precision performance, were always on the roadmap, he said. They were just put in ahead of schedule because the community was asking for them.

The first-ever Tesla GPU-equipped cluster was shipped to the Max Planck Institute in 2008 to support Professor Holger Stark’s work in understanding the 3D structure of “macromolecules.” Stark had been using GeForce GPUs for awhile, but he wanted to scale his work to a cluster to speed up the image processing. Later that year, the first deployment of the next-generation Teslas (the 10-series GPUs), was undertaken at Tokyo Tech. Those GPUs, in this case, 170 S1070 Tesla servers, were folded into the TSUBAME 1.2 system. That machine became the first GPU-equipped supercomputer on the TOP500 list.

More Tesla cluster deployments followed. According to Keane, these larger deployments suggested the world needed ECC support and a lot more double precision — features required by large-scale scientific computing. Customers also needed more sophisticated CUDA driver software to optimize the CPU-GPU interface. “So the people you’re selling to influence the type of features you put in the GPU and the software,” Keane said.

In that sense, NVIDIA sees itself more as a catalyst for the community, rather than a market leader, per se. It’s certainly conceivable that some company is going to make more money from products based on NVIDIA’s GPGPUs than NVIDIA itself. Beyond straight HPC, GPU computing is now being employed in everything from computer vision to business intelligence. Like the CPU, the GPU is now in that territory where developers are adapting to the chip, rather than the other way around.

“We could not have written the list of applications that are here at GTC,” Keane told me. “Some are obvious, like pattern recognition and graphics. But things like neuron research? We wouldn’t have come up with that. So there are areas we’re going into because of the creativity of the developer.”

NVIDIA is counting on its next two generations of GPUs — Kepler and Maxwell — to keep the momentum going. Although new GPU computing features are in the offing for these architectures, there is going to be a concerted focus on energy efficiency. Although GPUs already have an enviable FLOPS/watt ratio, system vendors can’t accommodate devices that are more power-hungry than the current crop of chips. Fermi Teslas are rated at 225 watts today, which is frankly more than most server makers are comfortable with. So like its CPU competition, NVIDIA will be compelled to bring out more powerful devices in the same (or lower) thermal envelop.

For supercomputing, this is going to be a critical feature, especially for those counting on GPGPUs as a path to exascale. According to Keane (but not only him), delivering a 1,000-fold performance improvement over today’s computers cannot be achieved with the old techniques — certainly not with transistor and voltage scaling, and probably not with x86 manycore. The route to faster computers will be accomplished indirectly through lower power, which will translate into more parallelism, said Keane.

But achieving that level of parallelism on a conventional CPU is a lot trickier than doing it on a GPU. NVIDIA Chief Scientist Bill Dally is convinced the GPU architecture is inherently superior in delivering more FLOPS/watt than general-purpose CPUs and has even sketched a path to exascale based on extrapolations of GPU technology.

Technology aside, there’s still the question of how NVIDIA is going to make the business model work for HPC. Keane admitted that his Tesla business wouldn’t be viable as a stand-alone company. Given the cost of semiconductor design and the rest of the infrastructure need to support processor development, you need a broad product base, he said. A $2,000 Tesla device would probably cost $10,000 if you factored in all the overhead costs. You just have to look to now-defunct ClearSpeed to see the folly of such a business model.

The way NVIDIA makes this work is to amortize the R&D costs over a much larger product set, in this case the GeForce and Quadro offerings. (The Tegra products use a somewhat different set of technologies.) Tesla is designed as a higher end product, with more cores, more floating point performance, and ECC support. The consumer side needs those things. But since all three units are able to share design and development, Keane can extract his HPC goodies. “AMD has that model, Intel has that model, now NVIDIA has that model,” he said.

But that doesn’t mean the company is content to see the Teslas remain a niche business. Far from it. Keane envisions a volume market for his high-end GPUs beyond strict high performance computing. For example, computers running air traffic control, Internet traffic, and billing systems for a telecom can all benefit from the data parallel muscle of a GPU. Although mostly invisible, these “infrastructure” computers form the backbone of many IT businesses, not to mention the government. “The real volume market for a product like Tesla is in the computers you don’t see,” said Keane.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This