For Proprietary HPC, Hope Springs Eternal

By Michael Feldman

October 14, 2010

Over the past 15 years, commodity-based server computing has probably done more to mainstream HPC than any other single factor.  But specialized HPC certainly hasn’t disappeared, and the market is periodically tested by those who believe that proprietary hardware is the true path to supercomputing Nirvana.

By any measure, commodity-based HPC systems — basically, we’re talking x86 Linux clusters — dominate the industry. But because of the presence of a healthy supercomputing segment (systems over $500K), this dominance is not completely overwhelming. According to IDC’s latest figures standard clusters took 64 percent of the market. At the level of the processor though, the statistics are more skewed. IDC estimates about three-quarters of HPC server revenue comes from x86-based systems, while InterSect360 Research reports fully 90 percent of systems in their most recent site survey use chips from either AMD or Intel.

In general, companies who come up with proprietary technologies (especially proprietary processors) have had limited success in this market. Often very limited. ClearSpeed and SiCortex represent two of the most recent providers of customized solutions who met untimely ends. Although ClearSpeed’s accelerators offered even better performance per watt than GPGPUs, the proprietary nature of the technology kept HPC users away in droves. SiCortex and its MIPS-based clusters also offered up some very compelling performance per watt numbers, but the business couldn’t reach escape velocity before rough economic times hit in 2009.

The dominance of the x86 processor has led to semi-custom designs like the Cray XT/XEs and SGI’s Altix UV line. In these cases, x86 silicon is used to take advantage of the cost benefits of volume server chips (not to mention the x86-centric software ecosystem), but the design is flavored with proprietary node controllers to maximize network performance. This has proved to be an eminently successful approach from a technology standpoint, although given the lack of profits emanating from these two companies, not yet a proven business model.

There are other possible variations on the pure commodity HPC theme, one of which was evident this week in Appro’s introduction of its HF1 server. In this case, the server maker incorporated overclocked x86 Xeon CPUs along with a liquid cooling system to compensate, with the idea of providing a souped-up box for high frequency trading (HFT). The servers are both expensive and warranty-challenged, but this is less of an issue for the lucrative business these servers are aimed at. It will be interesting to see if this industry-vertical customization model is a success here, and if so, if it can be replicated across other domains.

In fact, Convey Computer Corporation is aiming to do just this, in this case, with a “hybrid-core” model that employs x86 processors along with an FPGA as the co-processor. The idea is for the co-processor to be loaded with a “personality” that extends the x86 instruction set for a particular class of applications — bioinformatics, seismic processing, data mining, financial analytics, and so on. The two-year old company has managed to grab some critical acclaim and a handful of customers, but it has yet to take the HPC world by storm.

Traveling further down the proprietary continuum, we have supercomputers like IBM’s Blue Gene and its newer Power7-based HPC servers, both of which rely on custom ASICs and other hardware. Similarly, we have IBM’s QS22 blade, which was incorporated into Roadrunner, the first petaflop supercomputer. That blade was based on the PowerXCell 8i Cell processor, a variant of the Cell processor used in Sony PlayStations. IBM pulled the plug on PowerXCell line when it became apparent that the market wasn’t all that enthralled with Cell as an HPC accelerator.

An even more specialized supercomputer is the MDGRAPE-3 machine, developed by the RIKEN research institute in Japan. That system doesn’t even pretend to be a general-purpose machine; it was designed for a single class of application: molecular dynamics. The design uses a combo of proprietary MDGRAPE-3 processors and Intel Xeon chips. There was talk of an MDGRAPE-4 a couple of years ago, but I’ve heard nothing about it recently

Along the same lines, is the Anton supercomputer from D.E. Shaw Research. Like MDGRAPE-3, the application target is molecular dynamics, but in this case the processing is done entirely on a customized ASIC. An article in Nature this week reported Anton recently demonstrated a protein folding simulation 100 times longer than any previous simulation — a millisecond versus 10 microseconds. It certainly sounds like a game-changer for the protein folding folks; we just have to figure out how to put one in every lab.

Finally, there’s the Green Flash project currently under development at Berkeley Lab. The idea here is to design a special-purpose supercomputer to perform climate simulations based on a much higher resolution cloud model. To be of practical use, the system would need to be about 1,000 times more powerful than supercomputers currently available, but be much more efficient in terms of power, performance, and cost. The proposed design would employ about 20 million semi-custom Tensilica Xtensa processors, cost in the neighborhood of $75 million, and draw 4 MW of power. In May they demonstrated a logical prototype of the machine by emulating the processors building blocks on an FPGA platform.

Of course, if NVIDIA has its way, system vendors will be able to create a general-purpose supercomputer with the performance characteristics approaching that of an Anton or Green Flash a few years down the road. The GPU maker’s future generation processors, Kepler in 2011 and Maxwell in 2013, will be 3 and 10 times more powerful, respectively, than the current Fermi processors. Even though these future GPUs are unlikely to be as efficient as special-purpose hardware, the history of HPC suggests that designs based on commodity parts will eventually carry the day. None of which will keep people from dreaming up ever more powerful custom supercomputers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This