For Proprietary HPC, Hope Springs Eternal

By Michael Feldman

October 14, 2010

Over the past 15 years, commodity-based server computing has probably done more to mainstream HPC than any other single factor.  But specialized HPC certainly hasn’t disappeared, and the market is periodically tested by those who believe that proprietary hardware is the true path to supercomputing Nirvana.

By any measure, commodity-based HPC systems — basically, we’re talking x86 Linux clusters — dominate the industry. But because of the presence of a healthy supercomputing segment (systems over $500K), this dominance is not completely overwhelming. According to IDC’s latest figures standard clusters took 64 percent of the market. At the level of the processor though, the statistics are more skewed. IDC estimates about three-quarters of HPC server revenue comes from x86-based systems, while InterSect360 Research reports fully 90 percent of systems in their most recent site survey use chips from either AMD or Intel.

In general, companies who come up with proprietary technologies (especially proprietary processors) have had limited success in this market. Often very limited. ClearSpeed and SiCortex represent two of the most recent providers of customized solutions who met untimely ends. Although ClearSpeed’s accelerators offered even better performance per watt than GPGPUs, the proprietary nature of the technology kept HPC users away in droves. SiCortex and its MIPS-based clusters also offered up some very compelling performance per watt numbers, but the business couldn’t reach escape velocity before rough economic times hit in 2009.

The dominance of the x86 processor has led to semi-custom designs like the Cray XT/XEs and SGI’s Altix UV line. In these cases, x86 silicon is used to take advantage of the cost benefits of volume server chips (not to mention the x86-centric software ecosystem), but the design is flavored with proprietary node controllers to maximize network performance. This has proved to be an eminently successful approach from a technology standpoint, although given the lack of profits emanating from these two companies, not yet a proven business model.

There are other possible variations on the pure commodity HPC theme, one of which was evident this week in Appro’s introduction of its HF1 server. In this case, the server maker incorporated overclocked x86 Xeon CPUs along with a liquid cooling system to compensate, with the idea of providing a souped-up box for high frequency trading (HFT). The servers are both expensive and warranty-challenged, but this is less of an issue for the lucrative business these servers are aimed at. It will be interesting to see if this industry-vertical customization model is a success here, and if so, if it can be replicated across other domains.

In fact, Convey Computer Corporation is aiming to do just this, in this case, with a “hybrid-core” model that employs x86 processors along with an FPGA as the co-processor. The idea is for the co-processor to be loaded with a “personality” that extends the x86 instruction set for a particular class of applications — bioinformatics, seismic processing, data mining, financial analytics, and so on. The two-year old company has managed to grab some critical acclaim and a handful of customers, but it has yet to take the HPC world by storm.

Traveling further down the proprietary continuum, we have supercomputers like IBM’s Blue Gene and its newer Power7-based HPC servers, both of which rely on custom ASICs and other hardware. Similarly, we have IBM’s QS22 blade, which was incorporated into Roadrunner, the first petaflop supercomputer. That blade was based on the PowerXCell 8i Cell processor, a variant of the Cell processor used in Sony PlayStations. IBM pulled the plug on PowerXCell line when it became apparent that the market wasn’t all that enthralled with Cell as an HPC accelerator.

An even more specialized supercomputer is the MDGRAPE-3 machine, developed by the RIKEN research institute in Japan. That system doesn’t even pretend to be a general-purpose machine; it was designed for a single class of application: molecular dynamics. The design uses a combo of proprietary MDGRAPE-3 processors and Intel Xeon chips. There was talk of an MDGRAPE-4 a couple of years ago, but I’ve heard nothing about it recently

Along the same lines, is the Anton supercomputer from D.E. Shaw Research. Like MDGRAPE-3, the application target is molecular dynamics, but in this case the processing is done entirely on a customized ASIC. An article in Nature this week reported Anton recently demonstrated a protein folding simulation 100 times longer than any previous simulation — a millisecond versus 10 microseconds. It certainly sounds like a game-changer for the protein folding folks; we just have to figure out how to put one in every lab.

Finally, there’s the Green Flash project currently under development at Berkeley Lab. The idea here is to design a special-purpose supercomputer to perform climate simulations based on a much higher resolution cloud model. To be of practical use, the system would need to be about 1,000 times more powerful than supercomputers currently available, but be much more efficient in terms of power, performance, and cost. The proposed design would employ about 20 million semi-custom Tensilica Xtensa processors, cost in the neighborhood of $75 million, and draw 4 MW of power. In May they demonstrated a logical prototype of the machine by emulating the processors building blocks on an FPGA platform.

Of course, if NVIDIA has its way, system vendors will be able to create a general-purpose supercomputer with the performance characteristics approaching that of an Anton or Green Flash a few years down the road. The GPU maker’s future generation processors, Kepler in 2011 and Maxwell in 2013, will be 3 and 10 times more powerful, respectively, than the current Fermi processors. Even though these future GPUs are unlikely to be as efficient as special-purpose hardware, the history of HPC suggests that designs based on commodity parts will eventually carry the day. None of which will keep people from dreaming up ever more powerful custom supercomputers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This