The Second Coming of TSUBAME

By Michael Feldman

October 14, 2010

When the TSUBAME 2.0 supercomputer is formally inaugurated in December, it will officially be declared the fastest supercomputer in Japan. However, it’s not simply speed that separates this machine; boasting a raw performance of 2.4 petaflops, the new TSUBAME exceeds the total FLOPS capacity of all other government and academic supercomputers in Japan today. That kind of computational brawn will make it the platform of choice for some of the most powerful scientific applications on the planet.

TSUBAME’s other claim to fame is that it is part of the vanguard of a new generation of GPGPU-powered supercomputers making their way into large research institutions around the world. China seems particularly enthusiastic about the technology and has already installed three GPU-equipped supercomputers: Nebulae (2.98 petaflops), Mole-8.5 (1.14 petaflops), and Tianhe-1 (0.56 petaflops). France, Australia and the US are also gearing up to deploy large GPU-accelerated clusters over the next 18 months, and other countries will no doubt follow suit.

Tokyo Tech, though, has been in the GPGPU camp for a couple of years now. After flirting with ClearSpeed accelerators with TSUBAME 1.0 in 2006, by 2008 they realized that GPUs were destined to become the modern-day vector processors for HPC. That year the institute added 170 NVIDIA Tesla S1070 servers (680 GPUs) as part of the TSUBAME 1.2 upgrade, which increased the machine’s peak performance from 80 to 141 teraflops. This 1.2 incarnation also turned out to be the first GPGPU-powered supercomputer to earn a spot on the TOP500 list.

These first-generation TSUBAME machines were built with Sun Microsystems gear, based on the AMD Opteron-based x4600 servers. The second generation is quite a different animal. The dissolution of Sun’s HPC roadmap under the Oracle regime meant Tokyo Tech had to find a different system vendor going forward. That vendor turned out to be HP (who, by the way, will also be the prime OEM for the NSF-funded Keeneland GPGPU supercomputer in the US). HP, along with NEC, co-designed the second generation system, with NEC also providing on-site integration and software tuning.

As pointed out in last week’s coverage of HP’s new GPGPU gear, TSUBAME 2.0 will use the company’s latest ProLiant SL390s G7 server for its compute infrastructure. Specifically, the 2.4 petaflops of compute power will be derived from 1,442 compute nodes: 1,408 of which are the new SL390s G7 nodes, each equipped with two Intel Westmere EP CPUs (6-core, 2.93 GHz) and three NVIDIA M2050 “Fermi” modules. The system will also include 34 Nehalem EX-based nodes hooked up 34 10-series Tesla S1070 servers. Total memory capacity for the system is 80.6 TB of DRAM, plus 12.7 TB of local GDDR memory on the GPU devices.

Each node will also be outfitted with either 120 GB, 240 GB or 480 GB of solid state disk (SSD) local storage for a total of just under 174 TB. External storage is provided by over 7 PB of DataDirect Networks gear, including a 6 PB Lustre partition plus another petabyte of NFS/iSCSI-based disk. An 8 PB Sun SL8500 tape system represents the final layer to TSUBAME’s storage infrastructure.

The whole cluster is woven together with QDR InfiniBand, in a full bisection, fat tree architecture. Voltaire is supplying the networking gear, including 12 core switches (Grid Director 4700) and 179 edge switches (Grid Director 4036). The SL390s G7 nodes will use dual-rail InfiniBand, utilizing Mellanox silicon on the motherboard and an adapter card for the second rail. Half a dozen 10 GbE switches, also supplied by Voltaire, have been installed to hook the machine up to the Sun tape system.

Compared to the Jaguar supercomputer at Oak Ridge, which has essentially the same peak performance (2.3 petaflops), TSUBAME 2.0 is just one-quarter its size and will use about one-quarter the power. In fact, the 44-rack TSUBAME takes up only 200 square meters of floor space and consumes only around a megawatt of power, which helps to explain why GPU computing has become so popular in this island nation of limited land and energy resources.

At the recent NVIDIA GPU Technology Conference, Professor Satoshi Matsuoka, who leads the TSUBAME effort, reported that the system was installed over the summer and is now up and running. Currently it is undergoing stress tests, which includes Linpack benchmarking. Matsuoka said they expect to achieve between 1.2 to 1.4 petaflops on Linpack, which would place it in the number 2 spot on the TOP500 list today, behind Jaguar’s 1.7 petaflop mark.

Where Matsuoka expects the system to really shine though is with real-world applications in climate and weather forecasting, biomolecular modeling, tsunami simulations, CFD codes, and raft of other scientific codes. Tokyo Tech’s TSUBAME users have already had a couple of years developing CUDA software on the previous generation system. In a few short weeks, the first batch of second generation CUDA codes will meet their second-generation GPUs — and on a true petascale platform.

One of the most interesting applications is ASUCA, a Japanese weather forecasting code similar to the US-based Weather Research and Forecasting (WRF) model developed by NCAR and others. ASUCA, though, has been ported in its entirety to GPUs and is projected to achieve 150 teraflops on the new TSUBAME. To lend some perspective, the current weather forecasting performance record is around 50 teraflops with WRF running on ORNL’s Jaguar. The GPU-accelerated ASUCA represents an 80-fold improvement compared to a CPU-only implementation.

According to Matsuoka, although the official TSUBAME 2.0 inauguration is in December, the system will be available to users around the beginning of November. That includes over 2,000 researchers in academia, government and industry, including some outside of Japan. And until Japan’s 10-petaflop “K” supercomputer becomes operational in 2012, TSUBAME will be the country’s number one machine. Beyond that, a 30-petaflop TSUBAME 3.0 is already on the drawing board and is expected to launch in 2014 or 2015.

In the meantime, Tokyo Tech is poised to become a hotbed of petascale GPU computing for the open science community. Matsuoka has been an outspoken advocate of the technology and has managed to attract a vibrant community of  software developers to the TSUBAME mission. Although Tokyo Tech can’t compete in budget and facility size with the most well-endowed research institutions in the world, it has compensated for with its enthusiasm and clarity of purpose.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This