Enabling Research with MATLAB on the TeraGrid

By Nicole Hemsoth

October 18, 2010

Rajesh Bhaskaran at Cornell’s Space Systems Design Studio CUSat Satellite Project is leading a multi-year effort to create and deploy an autonomous in-orbit inspection satellite system using a MATLAB-based simulation.

Meanwhile, Ricky Harjanto at UC San Diego’s Cartilage Tissue Engineering Lab is also using MATLAB to examine changes in the shape of mice femurs during postnatal development via statistical shape modeling techniques to determine variations in mouse development at different stages of growth.

At the same time, Harshal Mahajan at the University of Pittsburgh’s NSF Quality of Life Technology Center is modeling power wheelchair driving to determine different techniques to improve and enhance mobility for the many thousands who rely on safe, effective wheelchairs. Mahajan’s code uses the MATLAB system identification toolbox to build models from the wealth of driving data collected.

Outside of using MATLAB as their primary tool, these and other researchers have something else in common; they are all using Cornell University’s MATLAB on the TeraGrid experimental computing resource, which is helping them achieve fast results delivered to their desktop — and doing so in an operating environment they are already comfortable with.

High-Level Programming for the Non-Programmer

MATLAB is ubiquitous in scientific and large-scale computing with estimates closing in on over one million researchers who use the tool for a wide variety of technical computing applications. Outside of its use in technical applications, it is also being deployed to manipulate data gathered from a range of scientific instruments, including satellites, telescopes and sensors.

There are clear incentives to deliver easily-accessible software and computational resources to a large number of scientific users in general. This has been the goal of any number of universities and national labs from the era of grid until the present. This has been an aim of the National Science Foundation, which is one of a handful of funding sources for these types of projects and accordingly, it is not difficult to see how their interest was engaged when Cornell stated it would be capable of delivering MATLAB and high-performance computing to more researchers.

As Robert Buhrman, Senior Vice Provost for Research at Cornell, stated, “MATLAB on the TeraGrid will help enable a broader class of researchers who are well-versed in MATLAB to reduce the time to solution in a scalable manner without having to become parallel programming experts.” It is this reduced time to results and mitigation of programming challenges that makes this an attractive option — and one that has some direct results, judging from Cornell’s long list of research projects both pending and underway on the MATLAB and TeraGrid resource.

Part of the appeal for researchers is that the computational learning curve is diminished. Access to the 512-core resource does not require understanding of any particular operating system, MPI library, or batch scheduler. By utilizing the Parallel Computing Toolbox and the MATLAB Distributed Computing Server to access the resource via desktops and the TeraGrid science gateways, users who are part of TeraGrid are granted high-performance equipment without some of the common hassles on the programming front they used to encounter on a regular basis. In other words, it is allowing researchers to focus distinctly on their research problems, rather than forcing them to become, by proxy, experts in parallel programming.

The Partnership to Bring MATLAB to TeraGrid

Cornell University, in partnership with Purdue University, received an NSF grant to deploy MATLAB on the TeraGrid for what is currently deemed an experimental resource. Since MATLAB is such an important data tool for complex data analysis for many TeraGrid users, as a parallel resource it could provide an even greater opportunity to expand access to high-performance computing for researchers.

The goal of the partnership between the universities and the NSF is to provide “seamless parallel MATLAB computational services running on Windows HPC Server 2008 to remote desktop and Science Gateway users with complex analytic and fast simulation requirements.”

In a recent interview, David Lifka, director at the Cornell Center for Advanced Computing, noted that the funding from the NSF was in part to provide staff at Cornell that would develop software to allow MATLAB clients from any platform (Windows, Linux, Mac) to seamlessly connect to the experimental resource at Cornell and run jobs in parallel. This would mean that users would get their results back on their desktop via the Web interface without needing to learn a new batch system or new programming model. As Lifka explained, “Basically, once the users know MATLAB, they can use parallel MATLAB directly from their host client.”

The NSF also set aside funding for staff at Purdue University who were tasked with enabling the same sort of connectivity via their science gateway. Purdue has a software framework for building scientific gateways called HubZero — a framework that has been rising in popularity as more disciplines create domain-specific gateways of their own to share and augment research projects.

On a hardware and software level, it should be noted that Cornell’s cluster is not a “tricked out” resource by any means. The Dell PowerEdge HPC cluster is not a gigantic system; there are no special interconnects and it is not running any specialized, customized software. One look at the specs reveals that it’s running everything off the shelf, including Microsoft Windows HPC scheduler and the standard version of the MathWorks software, for example.

Lifka stated that the only part that is customized is the software interface that the client installs on his or her MATLAB client that handles the secure communication with the cluster to submit jobs.

The resource itself is modest, although the team hopes that it will eventually grow after proven success with the MATLAB on TeraGrid project. Current wait times are still an issue; this is not the instant-run access that some HPC-as-a-service providers from the “outside world” can deliver. The team publishes the current wait times, which generally run between three and four days, give or take.

Opening Doors to Discovery

MATLAB is in such wide use across disciplines because it allows researchers to focus on their immediate discipline-specific questions without needing to become advanced programmers. It is generally perceived as being far more compact for scientific and mathematical uses than Fortran or C, and for this reason, it is has become the most comfortable environment for many in academia, engineering and beyond. By delivering it to a larger number of users, Cornell, Purdue and TeraGrid are helping to advance scientific discovery and aid in the ease of access to many researchers.

“One of the beauties of MATLAB is that it’s such a broad tool that can be used across disciplines and that was the key thing we felt was important — and why we wanted to do this project with the NSF,” said Lifka. “The MathWorks’ MATLAB is used across business, academia and in national labs because it works and because it doesn’t require a steep learning curve. If you know your science and you know your MATLAB, you can get a lot done very quickly.”

Encouraging Broader Impact

Delivering parallel MATLAB as a resource for a broader class of researchers was part of what made the deal attractive to the National Science Foundation (NSF) as it examined the benefits of funding such a partnership. David Lifka, director at the Cornell Center for Advanced Computing, stated, “What we wanted to do and what the NSF wants to encourage is broader impact — bringing new users into the fold who need large-scale computing without the learning curve. We want to get them scaling their science up and hopefully, along the way, they ask some questions so we can continue to improve.”

The funding came from a Strategic Technologies and Cyberinfrastructure grant, which is backed by the NSF’s stated aims to bring new resources to bear to encourage greater access to high-performance computing. The idea behind the project is to present this as a resource so that later it can be determined whether or not this project will belong in the TeraGrid resource provider collection in the future. As Lifka noted, “We’re hopeful that someday we will be part of this collection, but today we’re not.”

Additional support for the project came from Dell, Microsoft and The Mathworks, purveyors of MATLAB. According to Lifka, this backing was due to the interest these stakeholders had in watching how utility computing could be made available and how the experimental resource might enable seamless access from Web to the desktop.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This