Seven Days of Speed

By Linda Barney

October 18, 2010

100 people, 168 miles of fiber, and the world’s fastest network

For a week in November, New Orleans will be home to one of the most advanced networks in the world. SCinet forms the data backbone of the annual SC conference: it takes months to build and connects to the world’s most advanced data networks, but it is only active for seven days each year before it is torn down and planning starts for next year.

Each year the SCinet design team pushes the state-of-the-art in cutting edge networking technology, and 2010 is no different. This year SCinet includes a 100 Gbps circuit alongside other infrastructure capable of delivering 260 gigabits per second of aggregate data bandwidth for conference attendees and exhibitors — that’s enough data to allow the entire collection of books at the Library of Congress to be transferred in well under a minute.

Introducing SCinet

“SCinet is the fastest network in the world for the few days that it exists each year. The aggregate bandwidth in SCinet exceeds the bandwidth in all but a few countries of the world,” according to Jamie Van Randwyk, manager, Informatics and Systems Assessments Department at Sandia National Laboratories and chair of SCinet.

But what is it?

“SCinet provides a high performance, production-quality network that enables attendees and exhibitors to connect to the Internet and research networks around the world,” explains Van Randwyk. “During the conference SCinet powers everything from the mundane – email and Google searches, for example — to the extraordinary one-of-a-kind application demonstrations that can only happen in this kind of environment.”

SCinet serves as the platform for exhibitors to demonstrate the advanced computing resources of their home institutions (and elsewhere) by supporting a wide variety of bandwidth-driven applications. At its core SCinet’s capabilities are driven by multiple 10 Gbps wide area circuits and a 100 Gbps circuit that connect the exhibit floor to high performance production and research networks around the world. The infrastructure also provides the ability for exhibitors to use dynamically provisioned circuits to allow dedicated capacity between their booths and other end points.

The SCinet architecture also includes an InfiniBand (IB) network to support distributed HPC application demonstrations. This year the InfiniBand fabric will consist of Quad Data Rate (QDR) 40, 80, and 120-gigabit per second (Gbps) circuits linking together various organizations and vendors with high-speed 120 Gbps circuits providing backbone connectivity through the SCinet InfiniBand switching infrastructure.

Collaborating to Build SCinet

But SCinet is not just about what happens on the show floor. What makes this effort even more remarkable is the partnerships that connect SC to the rest of the world. During SC10, SCinet will connect exhibitors and attendees to leading research and commercial networks around the world such as the Department of Energy’s ESnet, Internet2, National LambdaRail, LONI (Louisiana Optical Network Initiative), and others.

“The story of SCinet is amazing — building SCinet is truly a collaborative effort,” states Jeff Boote, Internet2’s assistant director of research and development and chair of SCinet for 2011. SCinet is built by a group of over 100 volunteers including scientists, engineers, and students. Participants are from the United States, Canada, and Europe and they work for universities, industry, government, and US national laboratories. Vendors have donated approximately $23 million in equipment to build SCinet this year. Planning begins more than a year in advance of each SC Conference and culminates with a high-intensity installation just seven days before the conference begins.

Pushing the Boundaries with the SCinet Sandbox

Beginning this year, SCinet is introducing the SCinet Research Sandbox (SRS). The SRS provides a unique opportunity for researchers to showcase emerging technologies in network monitoring, performance optimization, network security, and other areas on the forefront of communication systems research. SRS participants will demonstrate 100G networks for petascale computing, next-generation approaches to wide area file transfer, security analysis tools, and data-intensive computing.

“Whatever network research calipers you propose, SCinet offers an unprecedented sandbox for your exploration,” says Van Randwyk.

SCinet Behind the Scenes: power, measurement, and more

The physical aspects of a network as vast and capable as SCinet are the first things about this effort that most people think of, but they only tell part of the story. Measurement, power planning, wireless communications, and more all play a pivotal role in ensuring that SCinet can successfully support the conference each year. And each area presents its own opportunities for researchers and planners to get a unique window into their area of study.

The Measurement team provides planning, performance, and network utilization tools and metrics and enables attendees to view real time network traffic stats across the infrastructure. The SCinet security teams is there to help protect SCinet assets from external hackers and malicious access, and in the process of protecting collects extensive statistics on SC network usage patterns. On-site access to these high-speed taps offers researchers a unique sample of extremely diverse security data.

The SCinet Wide Area Network (WAN) team provides national and international connectivity for exhibitor communications to external storage, compute or remote national research and education networks. SCinet’s WAN is one of the fastest networks on the planet, exceeding a peak bandwidth of 260 Gigabytes per second. This capability is used by Scientists to support e-science initiatives, but is also available to both regular exhibitors and Sandbox participants interested in technologies to advance computer communications.

The LAN Routing team provides the essential connectivity services typical of a large, diverse production network against the backdrop of a high demand and essential reliability environment. The routing team offers all services above the Optical Layer and provides consulting, configuration, optimization and trouble-shooting services for all connected exhibitors and demonstrations. Researchers interested in exploring network optimization, novel protocols or tools can propose to collaborate with this team and leverage the power and diversity of the SCinet infrastructure.

About the Author

Linda Barney owns Barney and Associates, a technical, marketing writing and Web firm in Beaverton, Oregon, that provides writing and Web content for the high tech, government, medical and scientific communities. Readers can reach her at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This