Seven Days of Speed

By Linda Barney

October 18, 2010

100 people, 168 miles of fiber, and the world’s fastest network

For a week in November, New Orleans will be home to one of the most advanced networks in the world. SCinet forms the data backbone of the annual SC conference: it takes months to build and connects to the world’s most advanced data networks, but it is only active for seven days each year before it is torn down and planning starts for next year.

Each year the SCinet design team pushes the state-of-the-art in cutting edge networking technology, and 2010 is no different. This year SCinet includes a 100 Gbps circuit alongside other infrastructure capable of delivering 260 gigabits per second of aggregate data bandwidth for conference attendees and exhibitors — that’s enough data to allow the entire collection of books at the Library of Congress to be transferred in well under a minute.

Introducing SCinet

“SCinet is the fastest network in the world for the few days that it exists each year. The aggregate bandwidth in SCinet exceeds the bandwidth in all but a few countries of the world,” according to Jamie Van Randwyk, manager, Informatics and Systems Assessments Department at Sandia National Laboratories and chair of SCinet.

But what is it?

“SCinet provides a high performance, production-quality network that enables attendees and exhibitors to connect to the Internet and research networks around the world,” explains Van Randwyk. “During the conference SCinet powers everything from the mundane – email and Google searches, for example — to the extraordinary one-of-a-kind application demonstrations that can only happen in this kind of environment.”

SCinet serves as the platform for exhibitors to demonstrate the advanced computing resources of their home institutions (and elsewhere) by supporting a wide variety of bandwidth-driven applications. At its core SCinet’s capabilities are driven by multiple 10 Gbps wide area circuits and a 100 Gbps circuit that connect the exhibit floor to high performance production and research networks around the world. The infrastructure also provides the ability for exhibitors to use dynamically provisioned circuits to allow dedicated capacity between their booths and other end points.

The SCinet architecture also includes an InfiniBand (IB) network to support distributed HPC application demonstrations. This year the InfiniBand fabric will consist of Quad Data Rate (QDR) 40, 80, and 120-gigabit per second (Gbps) circuits linking together various organizations and vendors with high-speed 120 Gbps circuits providing backbone connectivity through the SCinet InfiniBand switching infrastructure.

Collaborating to Build SCinet

But SCinet is not just about what happens on the show floor. What makes this effort even more remarkable is the partnerships that connect SC to the rest of the world. During SC10, SCinet will connect exhibitors and attendees to leading research and commercial networks around the world such as the Department of Energy’s ESnet, Internet2, National LambdaRail, LONI (Louisiana Optical Network Initiative), and others.

“The story of SCinet is amazing — building SCinet is truly a collaborative effort,” states Jeff Boote, Internet2’s assistant director of research and development and chair of SCinet for 2011. SCinet is built by a group of over 100 volunteers including scientists, engineers, and students. Participants are from the United States, Canada, and Europe and they work for universities, industry, government, and US national laboratories. Vendors have donated approximately $23 million in equipment to build SCinet this year. Planning begins more than a year in advance of each SC Conference and culminates with a high-intensity installation just seven days before the conference begins.

Pushing the Boundaries with the SCinet Sandbox

Beginning this year, SCinet is introducing the SCinet Research Sandbox (SRS). The SRS provides a unique opportunity for researchers to showcase emerging technologies in network monitoring, performance optimization, network security, and other areas on the forefront of communication systems research. SRS participants will demonstrate 100G networks for petascale computing, next-generation approaches to wide area file transfer, security analysis tools, and data-intensive computing.

“Whatever network research calipers you propose, SCinet offers an unprecedented sandbox for your exploration,” says Van Randwyk.

SCinet Behind the Scenes: power, measurement, and more

The physical aspects of a network as vast and capable as SCinet are the first things about this effort that most people think of, but they only tell part of the story. Measurement, power planning, wireless communications, and more all play a pivotal role in ensuring that SCinet can successfully support the conference each year. And each area presents its own opportunities for researchers and planners to get a unique window into their area of study.

The Measurement team provides planning, performance, and network utilization tools and metrics and enables attendees to view real time network traffic stats across the infrastructure. The SCinet security teams is there to help protect SCinet assets from external hackers and malicious access, and in the process of protecting collects extensive statistics on SC network usage patterns. On-site access to these high-speed taps offers researchers a unique sample of extremely diverse security data.

The SCinet Wide Area Network (WAN) team provides national and international connectivity for exhibitor communications to external storage, compute or remote national research and education networks. SCinet’s WAN is one of the fastest networks on the planet, exceeding a peak bandwidth of 260 Gigabytes per second. This capability is used by Scientists to support e-science initiatives, but is also available to both regular exhibitors and Sandbox participants interested in technologies to advance computer communications.

The LAN Routing team provides the essential connectivity services typical of a large, diverse production network against the backdrop of a high demand and essential reliability environment. The routing team offers all services above the Optical Layer and provides consulting, configuration, optimization and trouble-shooting services for all connected exhibitors and demonstrations. Researchers interested in exploring network optimization, novel protocols or tools can propose to collaborate with this team and leverage the power and diversity of the SCinet infrastructure.

About the Author

Linda Barney owns Barney and Associates, a technical, marketing writing and Web firm in Beaverton, Oregon, that provides writing and Web content for the high tech, government, medical and scientific communities. Readers can reach her at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This