Cloud-Driven Tools from Microsoft Research Target Earth, Life Sciences

By Nicole Hemsoth

October 19, 2010

Following its eScience Workshop at the University of California, Berkeley last week, Microsoft made a couple of significant announcements to over 200 attendees about new toolsets available to aid in ecological and biological research.

At the heart of its two core news items is a new ecological research tool called MODISAzure coupled with the announcement of the Microsoft Biology Foundation, both of which are tied to Microsoft’s Azure cloud offering, which until relatively recently has not on the scientific cloud computing radar to quite the same degree as Amazon’s public cloud resource.

While the company’s Biology Foundation announcement is not as reliant on the cloud for processing power as much as it supplies a platform for collaboration and information-sharing, the ecological research tool provides a sound use case of scientific computing in the cloud. All of the elements for what is useful about the cloud for researchers is present: dynamic scalability, processing power equivalent or more powerful than local clusters, and the ability for researchers to shed some of the programming and cluster management challenges in favor of on-demand access.

MODISAzure and Flexible Ecological Research

Studies of ecosystems, even on the minute, local scale are incredibly complex undertakings due to the fact that any ecosystem is comprised of a large number of elements; from water, climate and plant cycles to external influences, including human interference, the list of constituent parts that factor into the broader examination of an ecosystem seems almost endless. Each element doubles onto itself, forming a series of sub-factors that must be considered — a task that requires supercomputer assistance, or at least used to.

Last week at its annual eScience Workshop, Microsoft Research teamed up with the University of California, Berkeley to announce a new research tool that simplifies complex data analysis that creators claim will focus on “the breathing of the biosphere.” Notice how the word “breathing” here implies that there will be a near real-time implication to the way data is collected and analyzed, meaning that researchers will be able to see the ecosystem as it exists in each moment — or as it “breathes” or exists in a particular moment.

In order to monitor the breathing of a biosphere, data from satellite images from the over 500 FLUXNET towers are analyzed in minute detail, often down to what the team describes as a single-kilometer-level, or, if needed, on a global scale. The FLUXNET towers themselves, which are akin to a network of sensor arrays that measure fluctuations in carbon dioxide and water vapor levels, can provide data that can then be scaled over time, meaning that researchers can either get a picture of the present via the satellite images or can take the data and look for patterns that stretch back over a ten-year period if needed.

It is in this flexibility of timelines that researchers have to draw from that the term “breathing” comes into play. According to Catharine van Ingen, a partner architect on the project from Microsoft Research, “You see more different things when you can look big and look small. The ability to have that kind of living, breathing dataset ready for science is exciting. You can learn more and different things at each scale.”

To be more specific, as Microsoft stated in its release, the system “combines state-of-the-art biophysical modeling with a rich cloud-based dataset of satellite imagery and ground-based sensor data to support carbon-climate science synthesis analysis on a global scale.”

This system is based on MODISAzure, which Microsoft describes as a “pipeline for downloading, processing and reducing diverse satellite imagery.” This satellite imagery, which is collected from the network of FLUXNET towers, employs the Windows Azure platform to gain the scalable boost it needs to deliver the results to researchers’ desktops.

What this means, in other words, is that in theory, scientists studying the complex interaction of forces in an ecosystem and would otherwise rely on supercomputing capacity to handle such tasks, are now granted a maintenance- and hassle-free research tool via the power of Microsoft’s cloud offering.

Like a range of HPC on-demand resources, virtualized or otherwise, this means that scientists are able to shed the responsibility and difficulty of managing their own cluster or other large resource and instead can tap into the power of the cloud to remove the complexity and secure access to scalable, on-demand resources.

As mentioned earlier, part of what makes ecosystem research such an intricate process is that it relies on sharing and collaboration across disciplines along with effective ways to synthesize and then analyze the data in a way that’s relevant for specific purposes. According to Microsoft, “this approach enables scientists from different disciplines to share data and algorithms, helping them better understand and visualize how ecosystems behave as climate change occurs.”

Bringing Scientific Cloud Use Cases to Bear

Microsoft has been steadily reaching out to the scientific community with its Technical Computing initiative and push to its Azure cloud offering. During its eScience Workshop at Berkeley last week, the company also announced the Microsoft Biology Foundation (MBF), which is being made available to scientists in the areas of bioinformatics and general biology. In essence, this is a toolkit to help scientists share and access vital resources, computational and otherwise.

According to Microsoft, “This programming-language-neutral bioinformatics toolkit was built as an extension to the .NET framework [and] serves as a library of commonly used bioinformatics functions. MBF implements a range of parsers for common bioinformatics file formats; a range of algorithms for manipulating DNA, RNA and protein sequences and a set of connectors to biological Web services as the National Center for Biotechnology Information BLAST.”

During the MBF announcement, Microsoft stated that several universities and enterprises were already using MBF as a foundation for a number of experimental initiatives that would better equip scientists and clinicians with what they needed to leap key technological barriers and come up with better ways of researching and developing biological data-driven initiatives.

Although the news does not emerge daily, or sometimes even weekly, there are some fully functional cloud computing experiments and full-fledged initiatives underway at a number of institutions and companies, particularly in the biosciences. UC Berkeley is a hotbed of scientific cloud experimentation and this particular project brings Microsoft with its Azure platform into play, which in the case of Berkeley, is not always as prevalent press-wise as their work with Amazon’s cloud.

While life sciences companies and bioinformatics are the areas that seem to garner the most attention, in part because some of the analytics applications are often ideal workloads to shuffle out to public cloud providers since they do not require snappy low-latency networking and are often “bursty” in nature (i.e., the need for such processing fluctuates wildly), it is no surprise that cloud providers are making big noise about their work in scientific computing — especially in the biological realm.

This latest branch out into the environmental and ecological end of the spectrum, both with its MBF and MODISAzure announcement, brings Microsoft a few steps closer to becoming a real contender for AWS on the scientific cloud front. While there are Azure use cases for science and research, since Microsoft’s offering is a bit younger than AWS, it hasn’t received quite the same level of glory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This