Cloud-Driven Tools from Microsoft Research Target Earth, Life Sciences

By Nicole Hemsoth

October 19, 2010

Following its eScience Workshop at the University of California, Berkeley last week, Microsoft made a couple of significant announcements to over 200 attendees about new toolsets available to aid in ecological and biological research.

At the heart of its two core news items is a new ecological research tool called MODISAzure coupled with the announcement of the Microsoft Biology Foundation, both of which are tied to Microsoft’s Azure cloud offering, which until relatively recently has not on the scientific cloud computing radar to quite the same degree as Amazon’s public cloud resource.

While the company’s Biology Foundation announcement is not as reliant on the cloud for processing power as much as it supplies a platform for collaboration and information-sharing, the ecological research tool provides a sound use case of scientific computing in the cloud. All of the elements for what is useful about the cloud for researchers is present: dynamic scalability, processing power equivalent or more powerful than local clusters, and the ability for researchers to shed some of the programming and cluster management challenges in favor of on-demand access.

MODISAzure and Flexible Ecological Research

Studies of ecosystems, even on the minute, local scale are incredibly complex undertakings due to the fact that any ecosystem is comprised of a large number of elements; from water, climate and plant cycles to external influences, including human interference, the list of constituent parts that factor into the broader examination of an ecosystem seems almost endless. Each element doubles onto itself, forming a series of sub-factors that must be considered — a task that requires supercomputer assistance, or at least used to.

Last week at its annual eScience Workshop, Microsoft Research teamed up with the University of California, Berkeley to announce a new research tool that simplifies complex data analysis that creators claim will focus on “the breathing of the biosphere.” Notice how the word “breathing” here implies that there will be a near real-time implication to the way data is collected and analyzed, meaning that researchers will be able to see the ecosystem as it exists in each moment — or as it “breathes” or exists in a particular moment.

In order to monitor the breathing of a biosphere, data from satellite images from the over 500 FLUXNET towers are analyzed in minute detail, often down to what the team describes as a single-kilometer-level, or, if needed, on a global scale. The FLUXNET towers themselves, which are akin to a network of sensor arrays that measure fluctuations in carbon dioxide and water vapor levels, can provide data that can then be scaled over time, meaning that researchers can either get a picture of the present via the satellite images or can take the data and look for patterns that stretch back over a ten-year period if needed.

It is in this flexibility of timelines that researchers have to draw from that the term “breathing” comes into play. According to Catharine van Ingen, a partner architect on the project from Microsoft Research, “You see more different things when you can look big and look small. The ability to have that kind of living, breathing dataset ready for science is exciting. You can learn more and different things at each scale.”

To be more specific, as Microsoft stated in its release, the system “combines state-of-the-art biophysical modeling with a rich cloud-based dataset of satellite imagery and ground-based sensor data to support carbon-climate science synthesis analysis on a global scale.”

This system is based on MODISAzure, which Microsoft describes as a “pipeline for downloading, processing and reducing diverse satellite imagery.” This satellite imagery, which is collected from the network of FLUXNET towers, employs the Windows Azure platform to gain the scalable boost it needs to deliver the results to researchers’ desktops.

What this means, in other words, is that in theory, scientists studying the complex interaction of forces in an ecosystem and would otherwise rely on supercomputing capacity to handle such tasks, are now granted a maintenance- and hassle-free research tool via the power of Microsoft’s cloud offering.

Like a range of HPC on-demand resources, virtualized or otherwise, this means that scientists are able to shed the responsibility and difficulty of managing their own cluster or other large resource and instead can tap into the power of the cloud to remove the complexity and secure access to scalable, on-demand resources.

As mentioned earlier, part of what makes ecosystem research such an intricate process is that it relies on sharing and collaboration across disciplines along with effective ways to synthesize and then analyze the data in a way that’s relevant for specific purposes. According to Microsoft, “this approach enables scientists from different disciplines to share data and algorithms, helping them better understand and visualize how ecosystems behave as climate change occurs.”

Bringing Scientific Cloud Use Cases to Bear

Microsoft has been steadily reaching out to the scientific community with its Technical Computing initiative and push to its Azure cloud offering. During its eScience Workshop at Berkeley last week, the company also announced the Microsoft Biology Foundation (MBF), which is being made available to scientists in the areas of bioinformatics and general biology. In essence, this is a toolkit to help scientists share and access vital resources, computational and otherwise.

According to Microsoft, “This programming-language-neutral bioinformatics toolkit was built as an extension to the .NET framework [and] serves as a library of commonly used bioinformatics functions. MBF implements a range of parsers for common bioinformatics file formats; a range of algorithms for manipulating DNA, RNA and protein sequences and a set of connectors to biological Web services as the National Center for Biotechnology Information BLAST.”

During the MBF announcement, Microsoft stated that several universities and enterprises were already using MBF as a foundation for a number of experimental initiatives that would better equip scientists and clinicians with what they needed to leap key technological barriers and come up with better ways of researching and developing biological data-driven initiatives.

Although the news does not emerge daily, or sometimes even weekly, there are some fully functional cloud computing experiments and full-fledged initiatives underway at a number of institutions and companies, particularly in the biosciences. UC Berkeley is a hotbed of scientific cloud experimentation and this particular project brings Microsoft with its Azure platform into play, which in the case of Berkeley, is not always as prevalent press-wise as their work with Amazon’s cloud.

While life sciences companies and bioinformatics are the areas that seem to garner the most attention, in part because some of the analytics applications are often ideal workloads to shuffle out to public cloud providers since they do not require snappy low-latency networking and are often “bursty” in nature (i.e., the need for such processing fluctuates wildly), it is no surprise that cloud providers are making big noise about their work in scientific computing — especially in the biological realm.

This latest branch out into the environmental and ecological end of the spectrum, both with its MBF and MODISAzure announcement, brings Microsoft a few steps closer to becoming a real contender for AWS on the scientific cloud front. While there are Azure use cases for science and research, since Microsoft’s offering is a bit younger than AWS, it hasn’t received quite the same level of glory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This