Supercomputing Meets Social Media

By Michael Feldman

October 21, 2010

In supercomputing these days, it’s usually the big science applications (astrophysics, climate simulations, earthquake predictions and so on) that seem to garner the most attention. But a new area is quickly emerging onto the HPC scene under the general category of informatics or data-intensive computing. To be sure, informatics is not new at all, but its significance to the HPC realm is growing, mainly due to emerging application areas like cybersecurity, bioinformatics, and social networking.

The rise of social media, in particular, is injecting enormous amounts of data into the global information stream. Making sense of it with conventional computers and software is nearly impossible. With that in mind, a story in MIT Technology Review about using a supercomputer to analyze Twitter data caught my attention. In this case, the supercomputer was a Cray XMT machine operated by the DOE at Pacific Northwest National Lab (PNNL) as part of their CASS-MT infrastructure.

The application software used to drive this analysis was GraphCT, developed by researchers at Georgia Tech in collaboration with the PNNL folks. GraphCT is short for Graph Characterization Toolkit, and is designed to analyze really massive graph structures, like for example, the type of data that makes up social networks such as Twitter.

For those of you who have been hiding under a rock for the last few years, Twitter is a social media site for exchanging 140-character microblogs, aka tweets. As of April 2010, there were over 105 million registered users, generating an average of 55 million tweets a day. The purpose of Twitter is, of course… well, nobody knows for sure. But it does represent an amazing snapshot of what is capturing the attention of Web-connected humans on any given day. If only one could make sense of it.

Counting tweets or even searching them is a pretty simple task for a computer, but sifting out the Twitter leaders from the followers and figuring out the access patterns is a lot trickier. That’s where GraphCT and Cray supercomputing comes in.

GraphCT is able to map the Twitter network data to a graph, and make use of certain metrics to assign importance to the user interactions. It measures something called “betweenness centrality,” to rank the significance of tweeters.

Because of the size of the Twitter data and the highly multithreaded nature of the GraphCT software, the researchers couldn’t rely on the vanilla Web servers that make up the Internet itself, or even conventional HPC computing gear. Fine-grained parallelism plus sparse memory access patterns necessitated a large-scale, global address space machine, built to tolerate high memory latency.

The Cray XMT, a proprietary SMP-type supercomputer is such a machine, and is in fact specifically designed for this application profile. I suspect the reason you don’t hear more about the XMT is because most of them are probably deployed at those top secret three-letter government agencies, where data mining and analysis are job one.

The XMT at PNNL is a 128-processor system with 1 terabyte of memory. The distinguishing characteristic of this architecture is that each custom “Threadstorm” processor is capable of managing up to 128 threads simultaneously. Tolerance for high memory latencies is supported by efficient management of thread context at the hardware level.

The system’s 1 TB of global RAM is enough to hold more than 4 billion vertices and 34 billion edges of a graph. To put that in perspective, one of the Twitter datasets from September 2009 was encapsulated in 735 thousand vertices and 1 million edges, requiring only about 30 MB of memory. Applying the GraphCT analysis, the data required less than 10 seconds to process. The researchers estimated that a much larger Twitter dataset of 61.6 million vertices and 1.47 billion edges would require only 105 minutes.

When the Georgia Tech and PNNL researchers ran the numbers, they found that relatively few Twitter accounts were responsible for a disproportionate amount of the traffic, at least on the particular datasets they analyzed. The largest dataset was made up of all public tweets from September 20th to 25th in 2009, containing the hashtag #atlflood (to capture tweets about the Atlanta flood event). In this case, at least, the most influential tweets originated with a few major media and government outlets.

We’re likely to be hearing more about the graph applications in HPC in the near future. Data sets and data streams are outpacing the capabilities of conventional computers, and demand for digesting all these random bytes is building rapidly. Since the optimal architectures for this scale of data-intensive processing is apt to be quite different than that of conventional HPC platforms (which tend to be optimized for compute-intensive science codes), this could spur a lot more diversity in supercomputer designs.

To that end, a new group called the Graph 500 has developed a benchmark aimed at this category of applications, and intends to maintain a list of the top 500 most performant graph-capable systems. The first Graph 500 list is scheduled to be released at the upcoming Supercomputing Conference (SC10) in New Orleans next month.

In the meantime, if you’re interested in giving GraphCT a whirl, a pre-1.0 release of the software can be downloaded for free from the Georgia Tech website. You’ll just need a spare Cray XMT or POSIX-compliant machine to run it on.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This