Supercomputing Meets Social Media

By Michael Feldman

October 21, 2010

In supercomputing these days, it’s usually the big science applications (astrophysics, climate simulations, earthquake predictions and so on) that seem to garner the most attention. But a new area is quickly emerging onto the HPC scene under the general category of informatics or data-intensive computing. To be sure, informatics is not new at all, but its significance to the HPC realm is growing, mainly due to emerging application areas like cybersecurity, bioinformatics, and social networking.

The rise of social media, in particular, is injecting enormous amounts of data into the global information stream. Making sense of it with conventional computers and software is nearly impossible. With that in mind, a story in MIT Technology Review about using a supercomputer to analyze Twitter data caught my attention. In this case, the supercomputer was a Cray XMT machine operated by the DOE at Pacific Northwest National Lab (PNNL) as part of their CASS-MT infrastructure.

The application software used to drive this analysis was GraphCT, developed by researchers at Georgia Tech in collaboration with the PNNL folks. GraphCT is short for Graph Characterization Toolkit, and is designed to analyze really massive graph structures, like for example, the type of data that makes up social networks such as Twitter.

For those of you who have been hiding under a rock for the last few years, Twitter is a social media site for exchanging 140-character microblogs, aka tweets. As of April 2010, there were over 105 million registered users, generating an average of 55 million tweets a day. The purpose of Twitter is, of course… well, nobody knows for sure. But it does represent an amazing snapshot of what is capturing the attention of Web-connected humans on any given day. If only one could make sense of it.

Counting tweets or even searching them is a pretty simple task for a computer, but sifting out the Twitter leaders from the followers and figuring out the access patterns is a lot trickier. That’s where GraphCT and Cray supercomputing comes in.

GraphCT is able to map the Twitter network data to a graph, and make use of certain metrics to assign importance to the user interactions. It measures something called “betweenness centrality,” to rank the significance of tweeters.

Because of the size of the Twitter data and the highly multithreaded nature of the GraphCT software, the researchers couldn’t rely on the vanilla Web servers that make up the Internet itself, or even conventional HPC computing gear. Fine-grained parallelism plus sparse memory access patterns necessitated a large-scale, global address space machine, built to tolerate high memory latency.

The Cray XMT, a proprietary SMP-type supercomputer is such a machine, and is in fact specifically designed for this application profile. I suspect the reason you don’t hear more about the XMT is because most of them are probably deployed at those top secret three-letter government agencies, where data mining and analysis are job one.

The XMT at PNNL is a 128-processor system with 1 terabyte of memory. The distinguishing characteristic of this architecture is that each custom “Threadstorm” processor is capable of managing up to 128 threads simultaneously. Tolerance for high memory latencies is supported by efficient management of thread context at the hardware level.

The system’s 1 TB of global RAM is enough to hold more than 4 billion vertices and 34 billion edges of a graph. To put that in perspective, one of the Twitter datasets from September 2009 was encapsulated in 735 thousand vertices and 1 million edges, requiring only about 30 MB of memory. Applying the GraphCT analysis, the data required less than 10 seconds to process. The researchers estimated that a much larger Twitter dataset of 61.6 million vertices and 1.47 billion edges would require only 105 minutes.

When the Georgia Tech and PNNL researchers ran the numbers, they found that relatively few Twitter accounts were responsible for a disproportionate amount of the traffic, at least on the particular datasets they analyzed. The largest dataset was made up of all public tweets from September 20th to 25th in 2009, containing the hashtag #atlflood (to capture tweets about the Atlanta flood event). In this case, at least, the most influential tweets originated with a few major media and government outlets.

We’re likely to be hearing more about the graph applications in HPC in the near future. Data sets and data streams are outpacing the capabilities of conventional computers, and demand for digesting all these random bytes is building rapidly. Since the optimal architectures for this scale of data-intensive processing is apt to be quite different than that of conventional HPC platforms (which tend to be optimized for compute-intensive science codes), this could spur a lot more diversity in supercomputer designs.

To that end, a new group called the Graph 500 has developed a benchmark aimed at this category of applications, and intends to maintain a list of the top 500 most performant graph-capable systems. The first Graph 500 list is scheduled to be released at the upcoming Supercomputing Conference (SC10) in New Orleans next month.

In the meantime, if you’re interested in giving GraphCT a whirl, a pre-1.0 release of the software can be downloaded for free from the Georgia Tech website. You’ll just need a spare Cray XMT or POSIX-compliant machine to run it on.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This