Will Multicore Save the Day?

By Tiffany Trader

October 22, 2010

Moore’s Law is dead, or is it? There’s the camp that believes Moore’s Law, which states that transistor density on integrated circuits doubles about every two years, will be viable for only another decade or two. But there’s another camp that thinks the technology already exists to extend the trend: multicore processors. National Instruments’ P.J. Tanzillo is a proponent of the latter theory and has written an article on the subject at Technology Review.

The general purpose computing market has made another quantum leap in processing power in the last five years, but this time it’s not in clock rates, it’s in the number of processing cores. Contrary to popular belief, Moore’s Law is not dead. The number of transistors on modern processors continues to double every 18 months. Those transistors are now just manifesting themselves as additional processing cores. There are two primary reasons that this shift has been made: power and memory.

Tanzillo goes on to explain that with single-core processors, one way to increase performance is to increase clock rates, but with heating and energy concerns, that only goes so far. The increased density of multicore processors allows each core to be clocked well below its theoretical maximum, which assists with heat dissipation and power management.

As for the memory problem, Tanzillo relates how DRAM memory speed has been unable to keep pace with increases in microprocessor speed. Both are increasing exponentially, but with micoprocessors, there is a larger exponent. This creates a situation where memory latency becomes the biggest bottleneck to system performance. This is also known as the memory wall problem. Although it would be nice to think multicore has solved this problem, it’s really just postponed it a bit. The disparity still exists.

Machines with multiple applications that are each well suited to running on one core (as with a desktop computer) can take advantage of multicore architectures rather easily, with little reprogramming. But HPC presents a challenge because you have one application that must be divied up to run on multiple cores. Tanzillo explains:

So, just like the supercomputing clusters of the past, algorithms written in FORTRAN and C need to be modified to take advantage of parallel processing cores. These applications need to be broken into threads and these threads need to be designed to avoid some of the common mistakes in parallelization of code like race conditions and priority inversion. In addition, memory and communication between processes must be made thread-safe, and shared resources need to be avoided or addressed. These issues continue to haunt developers updating legacy code to new architectures, and they often result in instability and/or disappointing performance gains. As a result, a set of complementary technologies are growing into maturity that allow programmers to take advantage of multicore systems in new and interesting ways.

Some of those “new and interesting ways” revolve around dataflow programming and virtualization, and cloud computing should be considered too, according to Tanzillo.

One thing to keep in mind with multicore is that the math doesn’t completely work out. Ideally, doubling the cores would double the performance, but that’s not quite the case, it’s more of a 50% performance increase. And then there’s the 2009 Sandia study that suggested performance actually decreases for machines with more than eight cores:

A Sandia team simulated key algorithms for deriving knowledge from large data sets. The simulations show a significant increase in speed going from two to four multicores, but an insignificant increase from four to eight multicores. Exceeding eight multicores causes a decrease in speed. Sixteen multicores perform barely as well as two, and after that, a steep decline is registered as more cores are added.

For an alternate perspective on the multicore debate, we can look to NVIDIA’s Bill Dally, who believes that building parellel computers from the ground up using GPUs is the way to go. In his Forbes article from last April, Dally stated:

To continue scaling computer performance, it is essential that we build parallel machines using cores optimized for energy efficiency, not serial performance. Building a parallel computer by connecting two to 12 conventional CPUs optimized for serial performance, an approach often called multi-core, will not work. This approach is analogous to trying to build an airplane by putting wings on a train. Conventional serial CPUs are simply too heavy (consume too much energy per instruction) to fly on parallel programs and to continue historic scaling of performance.

The path toward parallel computing will not be easy. After 40 years of serial programming, there is enormous resistance to change, since it requires a break with longstanding practices. Converting the enormous volume of existing serial programs to run in parallel is a formidable task, and one that is made even more difficult by the scarcity of programmers trained in parallel programming.

A key point that was raised by both Tanzillo and Dally is that whether using multicore or parellel GPU-based machines, there’s still the problem of parallelizing the software to take advantage of multiple processors. And it’s not a minor problem. And yes, there’s resistance to change. But at the end of the day, it’s important to remember that while science isn’t about technology, it is a primary enabler.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This