SC10 Disruptive Technology Preview: The First Cloud Portal to “R” and Beyond

By Nicole Hemsoth

October 26, 2010

At each annual Supercomputing Conference a handful of innovations are selected as the year’s “disruptive technologies” that are most likely to revolutionize high-performance computing. These are described as “drastic innovations in current practices…that have the potential to completely transform” the landscape. 

At this year’s event in New Orleans, the focus will be on “new computing architectures and interfaces that will significantly impact the high-performance computing field throughout the next five to 15 years,” a focus that is reflected in the list of disruptive exhibitors who were selected by an SC committee. 

Another “qualification” of those selected innovations is that they cannot have already emerged into the landscape in any meaningful way—that they sit on the bleeding edge waiting for impetus to burst forth and cause a paradigm shift.

At the edge of this potential sea-change in HPC—and included on that SC10 list of innovations this year is a one-man show run by Karim Chine of his newly-minted company, Cloud Era, Ltd.

Chine’s opportunity to showcase his “Google Docs-like portal for scientific computing in the cloud” could mean that his three-year effort, which he bootstrapped after he was unable to secure the funding needed for his research and development process, could garner some significant interest and make what this self-described “social entrepreneur” calls a real, universal impact in the broad field of large-scale data analysis.

Chine’s goal when he began the project after leaving academia was to bring the R language to the cloud and deliver it seamlessly to users who can share infrastructure and collaborate in real-time with a wide range of documents and computational tools. Or at least that’s the Reader’s Digest version–the actual technology and processes that create the experience for technical users goes far beyond these elements in terms of complexity and what is possible.

From the outset, Chine saw the inherent value of R as a ubiquitous tool but also recognized that there are a number of embedded challenges to using the language in terms of memory and compute capabilities being stretched to the limit. On the other end of the spectrum, he also saw how he could carry over lessons from social networks. Chine notes that part of what makes his Elastic-R project innovative–disruptive, even–is that users can move beyond sharing static information as they would on social networking platform and instead have a scientific network where real-time information sharing would be at the core of the communities.

The R Language Coming to a Browser Near You

It’s far too simple to suggest that what makes the platform unique or disruptive is the capacity for real-time resource and information-sharing. At the core of this innovation is the enhanced ability for researchers to use R, Scilab, and other tools in a new way–on the “infinite” resources provided by the cloud.

Many will agree that the R language is the lingua franca of data analysis—it’s the standard for nearly all statistics students in every major university and has a user base that some estimate is well over one million. In Chine’s view, the beauty of the R language, which is an open source implementation of S, lies “not just in statistics, not just in open source, it’s become the environment where people share scientific artifacts—where people contribute and access powerful tools for working with data.”

Although Chine discussed at length some of the benefits of the R language for scientists and researchers, he noted that there are some significant limitations to the language, particularly in the arena of software architecture and the R’s distinct lack of ability to optimize memory usage. However, the memory and architecture problems can be addressed by delivering R via cloud-based resources like EC2—in an environment where a user is no longer constrained by compute or memory and where inexpensive machine instances with 70 GB of RAM can be called into action in a few moments.

The idea of a “few moments” to get an instance up and running might strike some newer EC2 users as a little far-fetched, which leads to another issue that Elastic-R might be able to solve. One of the goals Chine had in mind was not only to provide a resource that would make R available via a web browser on a machine like an iPad, for instance, which has limited compute capacity, but to deliver the resource in a way that is intuitive and takes away from potential complexity in accessing remote infrastructure.

Elastic-R enables scientists, educators and students to use cloud resources seamlessly, work with R engines and use their full capabilities from within any standard web browser. For example, they can collaborate in real time, create, share and reuse machines, sessions, data functions, spreadsheets, dashboards, etc.”

Elastic-R is also an applications platform that allows anyone to assemble statistical methods and data with interactive user interfaces for the end user. These interfaces and dashboards are created visually and are automatically published and delivered as simple web applications.”

For Chine, the revolutionary or disruptive nature of Elastic-R lies in its user-friendliness, something that few people might say about the static R language. He states that offering a platform on top of R that is easy to work with in any browser allows people to access infrastructure without being computer savvy or with any real specific training. In essence, in three minutes you can have simple access to machines on EC2 that will allow you to do anything you want with large-scale data.

Even more disruptive, however, is the fact that users can hook in other scientific computing tools like Scilab or MATLAB thus making it a universal platform that is open to change and adds the possibility of throwing in additional tools to enhance research. They can then eliminate the problems involved with having their data in disparate formats that can complicate sharing by porting their results directly into standard Microsoft Office tools that can be shared and edited in real time via the web interface.

Taking R Beyond the Public Cloud

At the moment the resource can only be deployed using Amazon EC2 but this is simply a matter of how far Chine has traveled with his experiences—in theory, this can run on any resource. For instance, when he first began rolling out the prototype version of Elastic-R, he did so on the National Grid Services in the U.K. using a standard cluster, which would be possible on any other resource he might have selected.

The point is that what Chine has created is agnostic to the hardware and operating system, so users can connect to computational engines via their browsers, thus enabling to work with large-scale data that you don’t move, but can share with others for collaboration in real-time.

As Chine stated, “What’s wonderful about Amazon is that they already deliver the most significant public cloud of the moment, but also that they’ve blurred the frontier between normal computing and HPC…For the end user or interaction design perspective there’s no borderline between general computing and high-performance computing now.”

There are a range of capabilities that Elastic-R that are almost too numerous to mention in a relatively short article. In fact, this seems to be one of the reasons why this is such a disruptive technology; it’s multi-layered in its potential usefulness. Scientists and researchers can open mainstream computing environments beyond R (Scilab, SciPy, Sage, etc.) can issue commands to the remote R engne, install and deploy new packages, and easily run computationally-intensive algorithms virtually that are managed through the simple interface, then share all of it, including the computational resources themselves.

The following is from a slide out of the following deck (the presentation, which is the pptx file provides a more in-depth overview of the layers of the Elastic-R portal and what it provides) showing the onion-like way users can visualize their access to resources and tools.

During an interview with Karim Chine, I was granted access to the interface to watch how collaboration happens and how resources are secured. Without much experience at all, it was possible to understand intuitively understand exactly what was needed to get my job running, to indentify where the results were, who I could share them with and how at the exact same moment I updated a spreadsheet, my partner on the other side of the ocean could see my changes in real time. Real-time. There was no delay. The moment he replaced a “5” with a “6” on his end I saw it on my own browser screen.

This is big news for the future of scientific collaboration and computation using remote resources. 

A Business Model Still in the Making

Chine’s goals are multi-layered and go far beyond making R more accessible to greater numbers of researchers via the cloud—he hopes to create a “Facebook” for scientists and statisticians where they can share and collaborate with big data in real time using a simple interface that they can build applications on top of and add or shed layers of computational tools and resources seamlessly.

 As a social entrepreneur, Chine notes that this interface, as it develops, means that researchers in developing countries without access to high-performance computing resources can now easily create machine instances for small sums and even if those prices are too high, they can also share infrastructure with collaborating participants.

In essence, what this means is that there is not only an economy of information sharing involved with this disruptive innovation—there is an economic angle that allows researchers to extend their infrastructure to those across the world easily and in only a few moments.

As a business model, however, there are some issues that Chine admits he is still working to resolve. On the one hand, he sees the possibility of involving those who make scientific tools available, including The MathWorks, partnering in a revenue-sharing sense once those tools are integrated. He also sees value for supercomputing centers that might want to provide a simpler and more streamlined way to access and use high-performance computing infrastructure.

For now, however, he admits that he is just waiting to see how useful this will be as he extends his user base, which is currently only at 140 members—all of whom he knows personally. He will be announcing the technology just before SC10 as publicly available.

While the cloud can open the doors to enhanced collaboration and resource sharing as well as providing the tools researchers need, there is a remaining need for software that creates a sturdy bridge between the tools for scientific computation and the cloud, which is where Elastic-R fits into the picture.

Coupled with the open, collaborative nature of the project, which is driven by its social entrepreneur founder and creator, it will be thrilling indeed to watch how the community receives, uses, then builds on this disruptive innovation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This