SC10 Disruptive Technology Preview: The First Cloud Portal to “R” and Beyond

By Nicole Hemsoth

October 26, 2010

At each annual Supercomputing Conference a handful of innovations are selected as the year’s “disruptive technologies” that are most likely to revolutionize high-performance computing. These are described as “drastic innovations in current practices…that have the potential to completely transform” the landscape. 

At this year’s event in New Orleans, the focus will be on “new computing architectures and interfaces that will significantly impact the high-performance computing field throughout the next five to 15 years,” a focus that is reflected in the list of disruptive exhibitors who were selected by an SC committee. 

Another “qualification” of those selected innovations is that they cannot have already emerged into the landscape in any meaningful way—that they sit on the bleeding edge waiting for impetus to burst forth and cause a paradigm shift.

At the edge of this potential sea-change in HPC—and included on that SC10 list of innovations this year is a one-man show run by Karim Chine of his newly-minted company, Cloud Era, Ltd.

Chine’s opportunity to showcase his “Google Docs-like portal for scientific computing in the cloud” could mean that his three-year effort, which he bootstrapped after he was unable to secure the funding needed for his research and development process, could garner some significant interest and make what this self-described “social entrepreneur” calls a real, universal impact in the broad field of large-scale data analysis.

Chine’s goal when he began the project after leaving academia was to bring the R language to the cloud and deliver it seamlessly to users who can share infrastructure and collaborate in real-time with a wide range of documents and computational tools. Or at least that’s the Reader’s Digest version–the actual technology and processes that create the experience for technical users goes far beyond these elements in terms of complexity and what is possible.

From the outset, Chine saw the inherent value of R as a ubiquitous tool but also recognized that there are a number of embedded challenges to using the language in terms of memory and compute capabilities being stretched to the limit. On the other end of the spectrum, he also saw how he could carry over lessons from social networks. Chine notes that part of what makes his Elastic-R project innovative–disruptive, even–is that users can move beyond sharing static information as they would on social networking platform and instead have a scientific network where real-time information sharing would be at the core of the communities.

The R Language Coming to a Browser Near You

It’s far too simple to suggest that what makes the platform unique or disruptive is the capacity for real-time resource and information-sharing. At the core of this innovation is the enhanced ability for researchers to use R, Scilab, and other tools in a new way–on the “infinite” resources provided by the cloud.

Many will agree that the R language is the lingua franca of data analysis—it’s the standard for nearly all statistics students in every major university and has a user base that some estimate is well over one million. In Chine’s view, the beauty of the R language, which is an open source implementation of S, lies “not just in statistics, not just in open source, it’s become the environment where people share scientific artifacts—where people contribute and access powerful tools for working with data.”

Although Chine discussed at length some of the benefits of the R language for scientists and researchers, he noted that there are some significant limitations to the language, particularly in the arena of software architecture and the R’s distinct lack of ability to optimize memory usage. However, the memory and architecture problems can be addressed by delivering R via cloud-based resources like EC2—in an environment where a user is no longer constrained by compute or memory and where inexpensive machine instances with 70 GB of RAM can be called into action in a few moments.

The idea of a “few moments” to get an instance up and running might strike some newer EC2 users as a little far-fetched, which leads to another issue that Elastic-R might be able to solve. One of the goals Chine had in mind was not only to provide a resource that would make R available via a web browser on a machine like an iPad, for instance, which has limited compute capacity, but to deliver the resource in a way that is intuitive and takes away from potential complexity in accessing remote infrastructure.

Elastic-R enables scientists, educators and students to use cloud resources seamlessly, work with R engines and use their full capabilities from within any standard web browser. For example, they can collaborate in real time, create, share and reuse machines, sessions, data functions, spreadsheets, dashboards, etc.”

Elastic-R is also an applications platform that allows anyone to assemble statistical methods and data with interactive user interfaces for the end user. These interfaces and dashboards are created visually and are automatically published and delivered as simple web applications.”

For Chine, the revolutionary or disruptive nature of Elastic-R lies in its user-friendliness, something that few people might say about the static R language. He states that offering a platform on top of R that is easy to work with in any browser allows people to access infrastructure without being computer savvy or with any real specific training. In essence, in three minutes you can have simple access to machines on EC2 that will allow you to do anything you want with large-scale data.

Even more disruptive, however, is the fact that users can hook in other scientific computing tools like Scilab or MATLAB thus making it a universal platform that is open to change and adds the possibility of throwing in additional tools to enhance research. They can then eliminate the problems involved with having their data in disparate formats that can complicate sharing by porting their results directly into standard Microsoft Office tools that can be shared and edited in real time via the web interface.

Taking R Beyond the Public Cloud

At the moment the resource can only be deployed using Amazon EC2 but this is simply a matter of how far Chine has traveled with his experiences—in theory, this can run on any resource. For instance, when he first began rolling out the prototype version of Elastic-R, he did so on the National Grid Services in the U.K. using a standard cluster, which would be possible on any other resource he might have selected.

The point is that what Chine has created is agnostic to the hardware and operating system, so users can connect to computational engines via their browsers, thus enabling to work with large-scale data that you don’t move, but can share with others for collaboration in real-time.

As Chine stated, “What’s wonderful about Amazon is that they already deliver the most significant public cloud of the moment, but also that they’ve blurred the frontier between normal computing and HPC…For the end user or interaction design perspective there’s no borderline between general computing and high-performance computing now.”

There are a range of capabilities that Elastic-R that are almost too numerous to mention in a relatively short article. In fact, this seems to be one of the reasons why this is such a disruptive technology; it’s multi-layered in its potential usefulness. Scientists and researchers can open mainstream computing environments beyond R (Scilab, SciPy, Sage, etc.) can issue commands to the remote R engne, install and deploy new packages, and easily run computationally-intensive algorithms virtually that are managed through the simple interface, then share all of it, including the computational resources themselves.

The following is from a slide out of the following deck (the presentation, which is the pptx file provides a more in-depth overview of the layers of the Elastic-R portal and what it provides) showing the onion-like way users can visualize their access to resources and tools.

During an interview with Karim Chine, I was granted access to the interface to watch how collaboration happens and how resources are secured. Without much experience at all, it was possible to understand intuitively understand exactly what was needed to get my job running, to indentify where the results were, who I could share them with and how at the exact same moment I updated a spreadsheet, my partner on the other side of the ocean could see my changes in real time. Real-time. There was no delay. The moment he replaced a “5” with a “6” on his end I saw it on my own browser screen.

This is big news for the future of scientific collaboration and computation using remote resources. 

A Business Model Still in the Making

Chine’s goals are multi-layered and go far beyond making R more accessible to greater numbers of researchers via the cloud—he hopes to create a “Facebook” for scientists and statisticians where they can share and collaborate with big data in real time using a simple interface that they can build applications on top of and add or shed layers of computational tools and resources seamlessly.

 As a social entrepreneur, Chine notes that this interface, as it develops, means that researchers in developing countries without access to high-performance computing resources can now easily create machine instances for small sums and even if those prices are too high, they can also share infrastructure with collaborating participants.

In essence, what this means is that there is not only an economy of information sharing involved with this disruptive innovation—there is an economic angle that allows researchers to extend their infrastructure to those across the world easily and in only a few moments.

As a business model, however, there are some issues that Chine admits he is still working to resolve. On the one hand, he sees the possibility of involving those who make scientific tools available, including The MathWorks, partnering in a revenue-sharing sense once those tools are integrated. He also sees value for supercomputing centers that might want to provide a simpler and more streamlined way to access and use high-performance computing infrastructure.

For now, however, he admits that he is just waiting to see how useful this will be as he extends his user base, which is currently only at 140 members—all of whom he knows personally. He will be announcing the technology just before SC10 as publicly available.

While the cloud can open the doors to enhanced collaboration and resource sharing as well as providing the tools researchers need, there is a remaining need for software that creates a sturdy bridge between the tools for scientific computation and the cloud, which is where Elastic-R fits into the picture.

Coupled with the open, collaborative nature of the project, which is driven by its social entrepreneur founder and creator, it will be thrilling indeed to watch how the community receives, uses, then builds on this disruptive innovation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This