SC10 Disruptive Technology Preview: The First Cloud Portal to “R” and Beyond

By Nicole Hemsoth

October 26, 2010

At each annual Supercomputing Conference a handful of innovations are selected as the year’s “disruptive technologies” that are most likely to revolutionize high-performance computing. These are described as “drastic innovations in current practices…that have the potential to completely transform” the landscape. 

At this year’s event in New Orleans, the focus will be on “new computing architectures and interfaces that will significantly impact the high-performance computing field throughout the next five to 15 years,” a focus that is reflected in the list of disruptive exhibitors who were selected by an SC committee. 

Another “qualification” of those selected innovations is that they cannot have already emerged into the landscape in any meaningful way—that they sit on the bleeding edge waiting for impetus to burst forth and cause a paradigm shift.

At the edge of this potential sea-change in HPC—and included on that SC10 list of innovations this year is a one-man show run by Karim Chine of his newly-minted company, Cloud Era, Ltd.

Chine’s opportunity to showcase his “Google Docs-like portal for scientific computing in the cloud” could mean that his three-year effort, which he bootstrapped after he was unable to secure the funding needed for his research and development process, could garner some significant interest and make what this self-described “social entrepreneur” calls a real, universal impact in the broad field of large-scale data analysis.

Chine’s goal when he began the project after leaving academia was to bring the R language to the cloud and deliver it seamlessly to users who can share infrastructure and collaborate in real-time with a wide range of documents and computational tools. Or at least that’s the Reader’s Digest version–the actual technology and processes that create the experience for technical users goes far beyond these elements in terms of complexity and what is possible.

From the outset, Chine saw the inherent value of R as a ubiquitous tool but also recognized that there are a number of embedded challenges to using the language in terms of memory and compute capabilities being stretched to the limit. On the other end of the spectrum, he also saw how he could carry over lessons from social networks. Chine notes that part of what makes his Elastic-R project innovative–disruptive, even–is that users can move beyond sharing static information as they would on social networking platform and instead have a scientific network where real-time information sharing would be at the core of the communities.

The R Language Coming to a Browser Near You

It’s far too simple to suggest that what makes the platform unique or disruptive is the capacity for real-time resource and information-sharing. At the core of this innovation is the enhanced ability for researchers to use R, Scilab, and other tools in a new way–on the “infinite” resources provided by the cloud.

Many will agree that the R language is the lingua franca of data analysis—it’s the standard for nearly all statistics students in every major university and has a user base that some estimate is well over one million. In Chine’s view, the beauty of the R language, which is an open source implementation of S, lies “not just in statistics, not just in open source, it’s become the environment where people share scientific artifacts—where people contribute and access powerful tools for working with data.”

Although Chine discussed at length some of the benefits of the R language for scientists and researchers, he noted that there are some significant limitations to the language, particularly in the arena of software architecture and the R’s distinct lack of ability to optimize memory usage. However, the memory and architecture problems can be addressed by delivering R via cloud-based resources like EC2—in an environment where a user is no longer constrained by compute or memory and where inexpensive machine instances with 70 GB of RAM can be called into action in a few moments.

The idea of a “few moments” to get an instance up and running might strike some newer EC2 users as a little far-fetched, which leads to another issue that Elastic-R might be able to solve. One of the goals Chine had in mind was not only to provide a resource that would make R available via a web browser on a machine like an iPad, for instance, which has limited compute capacity, but to deliver the resource in a way that is intuitive and takes away from potential complexity in accessing remote infrastructure.

Elastic-R enables scientists, educators and students to use cloud resources seamlessly, work with R engines and use their full capabilities from within any standard web browser. For example, they can collaborate in real time, create, share and reuse machines, sessions, data functions, spreadsheets, dashboards, etc.”

Elastic-R is also an applications platform that allows anyone to assemble statistical methods and data with interactive user interfaces for the end user. These interfaces and dashboards are created visually and are automatically published and delivered as simple web applications.”

For Chine, the revolutionary or disruptive nature of Elastic-R lies in its user-friendliness, something that few people might say about the static R language. He states that offering a platform on top of R that is easy to work with in any browser allows people to access infrastructure without being computer savvy or with any real specific training. In essence, in three minutes you can have simple access to machines on EC2 that will allow you to do anything you want with large-scale data.

Even more disruptive, however, is the fact that users can hook in other scientific computing tools like Scilab or MATLAB thus making it a universal platform that is open to change and adds the possibility of throwing in additional tools to enhance research. They can then eliminate the problems involved with having their data in disparate formats that can complicate sharing by porting their results directly into standard Microsoft Office tools that can be shared and edited in real time via the web interface.

Taking R Beyond the Public Cloud

At the moment the resource can only be deployed using Amazon EC2 but this is simply a matter of how far Chine has traveled with his experiences—in theory, this can run on any resource. For instance, when he first began rolling out the prototype version of Elastic-R, he did so on the National Grid Services in the U.K. using a standard cluster, which would be possible on any other resource he might have selected.

The point is that what Chine has created is agnostic to the hardware and operating system, so users can connect to computational engines via their browsers, thus enabling to work with large-scale data that you don’t move, but can share with others for collaboration in real-time.

As Chine stated, “What’s wonderful about Amazon is that they already deliver the most significant public cloud of the moment, but also that they’ve blurred the frontier between normal computing and HPC…For the end user or interaction design perspective there’s no borderline between general computing and high-performance computing now.”

There are a range of capabilities that Elastic-R that are almost too numerous to mention in a relatively short article. In fact, this seems to be one of the reasons why this is such a disruptive technology; it’s multi-layered in its potential usefulness. Scientists and researchers can open mainstream computing environments beyond R (Scilab, SciPy, Sage, etc.) can issue commands to the remote R engne, install and deploy new packages, and easily run computationally-intensive algorithms virtually that are managed through the simple interface, then share all of it, including the computational resources themselves.

The following is from a slide out of the following deck (the presentation, which is the pptx file provides a more in-depth overview of the layers of the Elastic-R portal and what it provides) showing the onion-like way users can visualize their access to resources and tools.

During an interview with Karim Chine, I was granted access to the interface to watch how collaboration happens and how resources are secured. Without much experience at all, it was possible to understand intuitively understand exactly what was needed to get my job running, to indentify where the results were, who I could share them with and how at the exact same moment I updated a spreadsheet, my partner on the other side of the ocean could see my changes in real time. Real-time. There was no delay. The moment he replaced a “5” with a “6” on his end I saw it on my own browser screen.

This is big news for the future of scientific collaboration and computation using remote resources. 

A Business Model Still in the Making

Chine’s goals are multi-layered and go far beyond making R more accessible to greater numbers of researchers via the cloud—he hopes to create a “Facebook” for scientists and statisticians where they can share and collaborate with big data in real time using a simple interface that they can build applications on top of and add or shed layers of computational tools and resources seamlessly.

 As a social entrepreneur, Chine notes that this interface, as it develops, means that researchers in developing countries without access to high-performance computing resources can now easily create machine instances for small sums and even if those prices are too high, they can also share infrastructure with collaborating participants.

In essence, what this means is that there is not only an economy of information sharing involved with this disruptive innovation—there is an economic angle that allows researchers to extend their infrastructure to those across the world easily and in only a few moments.

As a business model, however, there are some issues that Chine admits he is still working to resolve. On the one hand, he sees the possibility of involving those who make scientific tools available, including The MathWorks, partnering in a revenue-sharing sense once those tools are integrated. He also sees value for supercomputing centers that might want to provide a simpler and more streamlined way to access and use high-performance computing infrastructure.

For now, however, he admits that he is just waiting to see how useful this will be as he extends his user base, which is currently only at 140 members—all of whom he knows personally. He will be announcing the technology just before SC10 as publicly available.

While the cloud can open the doors to enhanced collaboration and resource sharing as well as providing the tools researchers need, there is a remaining need for software that creates a sturdy bridge between the tools for scientific computation and the cloud, which is where Elastic-R fits into the picture.

Coupled with the open, collaborative nature of the project, which is driven by its social entrepreneur founder and creator, it will be thrilling indeed to watch how the community receives, uses, then builds on this disruptive innovation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This