T-Platforms Places Bet on Switchless Supercomputing Interconnect

By Michael Feldman

October 27, 2010

Russian supercomputer maker T-Platforms is continuing its push into the elite end of the HPC market. On Monday, the company unveiled a joint venture with a group at the University of Heidelberg to develop a new ultra-fast interconnect for high-end supercomputing. The goal is to bring the technology to market in the form of an ASIC, which can be incorporated into a network interface controller (NIC) for HPC servers.

The technology, called EXTOLL, for Extreme Low Latency Interconnect, was born out of a research project led by Prof. Ulrich Brüning in the university’s Computing Architecture Group. The team there has created a working FPGA-based prototype for demonstration and software development purposes, but the final goal is to develop an ASIC for commercial production.

In a nutshell, EXTOLL is a switchless interconnect designed for ultra-low-latency, high bandwidth, and extreme scalability. The latter attribute is especially critical to the construction of large-scale HPC machines, which may contain tens of thousands of compute servers. According to Anton Korzh, a hardware architect at T-Platforms, the initial EXTOLL implementation will support up to 64 thousand nodes and at least a hundred cores per node. Even with the current generation of processors, that would allow systems to reach well into the multi-petaflop realm.

There is already an EXTOLL MPI software implementation in place, which has been developed and tested on the FPGA prototype. Since this technology is destined for petascale supercomputing, support for PGAS (Global Address Space) language environments is also in the works. Some support has to be baked into the operating system, and T-Platforms is planning to incorporate EXTOLL awareness into its own custom OS for HPC, ClustrX. In general, the proprietary software stack would be the biggest impediment to wider use of the technology.

Latency-wise, EXTOLL is aiming for sub-microsecond territory. The Heidelberg researchers believe they can achieve 500 nanoseconds (ns), NIC to NIC. No external switches are needed (switch logic is part of the NIC ASIC), and each hop in the network adds just 60 ns of delay. So even the worst cast latency for a 10,000 node supercomputer would be in the neighborhood of 3 microseconds — assuming a 3D torus network design, which is what T-Platforms has in mind for its implementation.

Bandwidth, too, is aimed at the upper end of the spectrum. Each of the six EXTOLL links on the NIC will be capable of transferring 120 gigabits/second, which works out to about 90 GB/sec for a single device. That’s about 2.5 times the speed of the current generation QDR InfiniBand, and puts it in the realm of the 160 GB/sec Cray Gemini interconnect used in the company’s newest XE6 “Baker” supercomputers.

The original EXTOLL design was based on the HyperTransport protocol, which would have effectively limited its use in supercomputing to AMD Opteron-based servers. T-Platforms persuaded the university researchers to incorporate PCI-Express (PCIe) support as well, so they could build hardware with Intel silicon. The current roadmap will include support for both PCIe 3.0 and HyperTransport 3.0. It’s worth noting that Cray’s future system interconnect, named “Aries,” will also support PCIe, and for exactly the same reason. The Aries technology is the follow-on to the Gemini interconnect, and will be used in the upcoming Cascade-class supercomputers.

While it’s a stretch to start comparing T-Platforms to Cray, the Russian vendor seems to be following the Cray model of layering a proprietary interconnect on top of commodity x86 parts for its top-of-the-line supercomputers. The big difference is that T-Platforms bought into the technology rather than developing it in-house. The arrangement between T-Platforms and the University of Heidelberg gives the company an equity position in the joint venture. In exchange, T-Platforms is investing an undisclosed sum in the project to help move the technology into commercial production.

The idea is for the supercomputer maker to get first dibs on the new interconnect so that it can be incorporated into a future blade product aimed at the upper end of the HPC market. T-Platforms intends to keep its InfiniBand-based blade, as well, for those systems that don’t require extreme scalability. According to Korzh, the company intends to move to a more modular blade design such that either interconnect technology (or perhaps even both) can be accommodated on the same basic motherboard.

The EXTOLL-based offering is already under development and is slated for launch in Q4 2011, when production of the NIC ASICs are scheduled to commence. The EXTOLL group is also interested in producing a stand-alone product that presumably would take the form of a PCIe-based network adapter that could be plugged into standard servers. That would make for a rather interesting setup for, say, a medium-sized supercomputer. Although the EXTOLL NICs are bound to be more expensive than their commodity InfiniBand or Ethernet brethren, the fact that one can do away with external switching could make for a compelling scale-out cluster model.

Getting the technology off the ground, however, is not going to come cheap. Typical costs for ASIC development alone can easily reach into the millions of dollars. Conveniently, T-Platforms recently announced an infusion of money from the state-run “Bank for Development and Foreign Economic Affairs” (Vneshekonombank), and although specific projects were not called out, the stated purpose of the investment was for “expanding T-Platforms’ supercomputing research and development efforts, along with providing support for the company’s expansion into the global HPC market.” These maneuverings appear designed as part of a concerted strategy to expand the Russian company’s reach into the European Union and beyond.

For the time being, though, Europe appears to be the primary target for T-Platforms’ supercomputing aspirations. The Russian (and former Soviet Union) high-end supercomputing market is too small, while the US one, represented mostly by DOE labs, DoD research centers, and NSF supercomputing centers, is under the implicit mandate to buy American. That said, a differentiated high-end offering from T-Platforms could shake up the positions of established European market players like Bull, Cray and IBM, in particular, and create a more diverse set of supercomputing choices than even the US enjoys.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This