HPC Movers and Shakers: Thomas Sterling

By Nicole Hemsoth

October 29, 2010

Ah, New Orleans. The Big Easy. What a great selection for this year’s Supercomputing Conference. It was, in fact, in New Orleans where I first met Thomas Sterling. Thomas, or “Tron” to his friends, graciously invited me to join a small group for dinner one evening during an IEEE conference last summer. We dined at one of the city’s sumptuous restaurants in the Quarter, of course. It was over dinner that warm summer evening that I discovered that this highly respected man, the “father of Beowulf clusters,” has a sharp wit and irrepressible sense of humor that I found absolutely irresistible. There was no doubt in my mind about who my next column would feature as we head to the home of Louisiana State University for SC10.

HPCwire: Thomas, I love your nickname, “Tron.” How did you come by that handle?

Thomas: I had a feeling you were going to bring this up. My nickname Tron goes way back to my Navy days where I was a “tweet”, or aviation electronics technician, repairing F4 Phantom aircraft avionics. When something went really screwy with the electronics, the guys in the shop would blame the “tron god”. Now, I may not have been the most motivated squid in the “nav”, but when there was a really hard problem I was usually the one to tackle it. That’s where “tron” came from; some association with this notional tron god. It’s kind of a compliment, I guess. Later, when serving as an editor on my school paper I used “Tron” as a pen name, and then as my login at MIT, as well as my email address for the inchoate ARPAnet. It’s stayed with me ever since. As Herman Melville might have written, “Call me Tron”.

HPCwire: Speaking of names, you are highly regarded as “the father of Beowulf clusters” and for your research on petaflops computing architecture. I remember that Woody Allen once said you should never take a course where they make you read “Beowulf.” (Laughs) Seriously, though, why did you pick that name for your approach to commodity clusters?

Thomas: (Chuckling) The name was, I should be embarrassed to admit, a complete accident. I was sitting in my office at the Goddard Space Flight Center, and the Program Manager called saying they were sending in the paperwork for my new project and they needed a name for it. I had been putting her off for close to a month. She said she would not hang up until she had a name, or there would not be a project.

I respond well to threats. I needed inspiration and looked around my office in desperation when I noticed at the top of a stack of books my mother’s old copy of Beowulf. I remember saying to the PM, and this is a quote: “Oh hell, just call it ‘Beowulf’; nobody will ever hear of it anyway!” And seriously, that’s how it happened. Someone in the press started calling our Linux clusters “Beowulf-class systems,” so they, whoever they were, get credit for giving the actual clusters that name.

I think there is a lesson here; I’m just not sure what it is.

HPCwire: What’s your stance on shared versus distributed memory? Will we continue to build petascale computers with global shared memory, similar to the legacy products from Sun or SGI, or do you think the programming will be different?

Thomas: This is an important topic and reflects the diversity of experiences that drive perspective, and hence conflict. A major problem is our terminology; our words do not provide us with an effective lexicon to consider all possibilities. For example: “distributed memory.” Does this mean physically separate with intervening distance, blocks of memory not sharing a unified name space, both, or something else? When memory access times are dominated not by the DRAM cycle time but the latency of communication, it is distributed memory. I expect this to be the case for the largest machines of the future. I also expect that hardware support for global address space and unified name spaces are required for efficiency, programmability, and scalability. That sounds like “shared memory.” But now there is that last issue: is it cache coherent? And the answer there is: No, not in the usual sense. But the full explanation to this is too long for a brief interview!

HPCwire: Speaking of which, there are still people out there who long for the days when supercomputers were specialized custom designs and not built out of consumer-grade electronics like Beowulf clusters. What do you say to those people? Will we ever return to using technology specifically crafted for HPC?

Thomas: I am among those who feel that design driven by HPC requirements is essential to advance the field towards Exascale. However, those same changes will be useful for general-purpose and commercial computing as well.

Many ideas first realized in “specialized” HPC designs have migrated into the common general-purpose microprocessor of today. My expectation is that we will continue to use general-purpose devices, but they will change in accordance with the needs of scalability, efficiency, and parallel programmability.

HPCwire: I’ve heard you refer to new “execution models” too. What does that mean? What’s wrong with the current execution models?

Thomas: An execution model is a set of governing principles guiding the co-design and operation of the many interoperable layers of a computing system. It permits the use of the notion of the “decision chain” that recognizes a set of contributing influences. Understanding the decision chain contributes to determining why the operation was performed where and when it was.

Throughout the extraordinary evolution of supercomputing, spanning twelve orders of magnitude in a single lifetime, advancing technologies have required adjustments to the way we organize structures and methods of operation. For instance, a change of balance in bandwidth versus capacity. At least five times we have experienced a revolution in supercomputing. A “6th phase change” is due, and is best represented as a new model of computation.

HPC is in the midst of such a phase change because the technologies are already seen to require different ways of organizing systems, such as multi-core and GPU accelerators. CSP and MPI will not fulfill the needs of all applications on all system classes.

HPCwire: So, you agree with the people who think that MPI is at the end of its rope, and that we need something new, soon. Are you working on alternative programming models?

Thomas: MPI is not near the end of its rope, but we do need something new soon. MPI even in its current form will serve many applications on many systems for many years.

HPCwire: One of your Caltech friends put me up to asking you this one; what do you miss about Caltech?

Thomas: No question, Caltech is a special place, and even after five years I get homesick for it occasionally. There is a mindset there that any fundamental question in science or engineering can be investigated by bright minds to reveal some, if not all, of its secrets. It is the right to strive, to exceed, to understand, that I miss most. Oh, and the strawberry lemonades at the Athenaeum, of course.

HPCwire: So, are there things you can do at LSU that are easier than if you were still at Caltech?

Thomas: Joining the faculty at LSU was a risk, both for LSU and for me! A large state school is a very different environment than boutique intellectual environments such as Caltech, and that concerned me. I had not served as a tenured Professor before and that was a risk for LSU as well. They wanted someone who would rapidly expand their research program in the area of HPC systems with high national exposure. LSU, with support of the state of Louisiana, established the Center for Computation and Technology that complemented the capabilities of the academic departments by providing an advanced environment for interdisciplinary research to foster the goals of both LSU and Louisiana. This has turned out to be a great fit and both LSU and I have benefitted from this new relationship.

HPCwire: What can you share with us about the research you are doing at LSU with “ParalleX”?

Thomas: The research we have undertaken at LSU is risky and driven by the premise that the field of HPC is in that 6th phase change, as discussed above. The ParalleX execution model is a new synthesis of a collection of abstract constructs, relationships, and functional mechanisms to address starvation, latency, overhead, and contention in systems comprising more than a billion simultaneous executing entities with worst-case latencies on the order of a hundred thousand cycles. Recently, the LSU group has teamed with Guang Gao at the University of Delaware, an expert in many related fields, to expand and improve the product of this research under the auspices of the DARPA UHPC Program, the Sandia-led X-Caliber team, and the Intel-led Runnemede team.

HPCwire: This is my ‘live your dream question’: If you could wave a wand and change something about the way HPC is today, what would that thing be?

Thomas: (pause) It basically comes down to having cores designed to operate efficiently in the context of a billion other like cores on a single computational problem, returning us to the notion of a single computer rather than merely a large loose collection of cores using software-managed I/O.

Maybe this does sound like something out of Hogwarts.

HPCwire: I have experienced firsthand your irrepressible sense of humor. What’s the funniest thing you’ve seen in this business?

Thomas: (Laughs) I always get into trouble when I think something is funny but the humor is often lost on others. One time when giving a talk at Los Alamos, I brought up the early energy-efficient computer, “Green Destiny” which, unfortunately, did not perform well, at least initially. I commented: “I don’t get it. Why don’t they just unplug the thing? They’d save even more power and get almost the same performance!” I was never invited back.

At a panel at the Supercomputing conference one year, a member of the audience asked about multithreading and I (without thinking of the consequences) commented that “we can thank Intel for associating the word ‘hyper’ with the number ‘2’.”

I didn’t get invited to a single whisper suite session that year.

HPCwire: Can you share with me two or three interesting things about you that relatively few (or none) of your colleagues or friends know?

Thomas: Attempting to find a human side of me may be a futile endeavor. It may not exist, and I am doubtful that your readers will find anything but my contributions of any interest. However, here goes. One: I love sailing; I used to have a J-105 sloop named “No Compromise.” Two: I am fascinated with the history of Bronze Age cultures and how emerging technologies drive them to ever more complex structures of civilization. Three: I used to enjoy long-distance river kayaking in the Arctic; and I still kayak today, though not to the extent that I used to.

HPCwire: Lastly, what do you consider to be your greatest personal achievement?

Thomas: Not to be trite, but I don’t believe I’ve done it yet. I expect to contribute to the new class of systems capable of Exaflops performance and effective dynamic graph processing for symbolic computing. I believe that such contributions will take the form of the new model of computation such as ParalleX, as a guiding abstraction and its manifestation as a new system software structure and new core architecture for symbiotic operation among billions of executing elements. If I can contribute in some small way to this “6th Phase of HPC,” I will consider that my best personal achievement.

About the Author

An avid HPC watcher and established technology marketing professional; Caroline resides in the California Bay Area and recently joined the HPCwire team as a contributing editor. You can reach her at caroline.connor@longstonegroup.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This