Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

By Nicole Hemsoth

November 1, 2010

Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

Crunching large quantities of data is a crucial component of modern academic life. On university campuses, everyone from chemists and engineers to researchers in sociology, economics and even literature needs access to high-performance computing (HPC). At Duke University, the Duke Shared Cluster Resource (DSCR) supports these needs for professors across the spectrum.

The DSCR serves 650 end users in 70 different research groups. One major research area that the DSCR caters to is the bioinformatics community. “Several of our professors are doing genome comparisons,” says John Pormann, Duke’s director of scalable computing. “Some researchers are building models that establish probabilities for when certain genes arose—and when species with a common ancestor became distinct. One is trying to develop the tree of life for a set of fungi by looking at genetics.”

Many bioinformatics researchers need to process an unprecedented volume of data. “One of our professors is working with a grant agency that gives grant recipients the newest, fastest gene-sequencing machine, rather than offering a large amount of money,” Pormann says. “Professors receive a cutting-edge gene sequencer, which spits out enormous amounts of data. They depend on the DSCR to provide an HPC environment that supports their data analysis needs.”

Cutting-edge research using limited power

In its efforts to meet those needs, the DSCR faces substantial logistical challenges. The building that houses the data center was constructed to hold classrooms, not a server farm. The data center has already maxed out the amount of electricity that can run through the building’s conduit. Its floor is raised only 12 inches, and the last air conditioning installation involved overhead units because the installers weren’t convinced they could push enough air through the floor to keep all the equipment cool.

“If we exceed the capacity of our current air conditioning unit, we have to go back to the drawing board,” says Pormann. “Adding power to our current location would be expensive because we’d have to bring in new power lines from the street, digging up sidewalks and parking lots in the process. Moving to a new data center would cost well into the six figures. We’d like to stay where we are, but that means we need to use the power and cooling in that room as efficiently as possible. It’s imperative as we expand our computing power that we keep our power and cooling resources constant.”

168 fewer watts per server

The DSCR needs to maximize the ratio of processing power to energy consumption for servers in its HPC cluster. The cluster encompasses 729 servers, from Dell PowerEdge M610 blade servers with Intel Xeon processor 5600 series to seven-year-old rack-mounted boxes. Oracle Grid Engine dynamically provisions application workloads to the most appropriate resources in the cluster.

To gain insight into the DSCR’s balance between processing power and consumption of energy and cooling resources, Pormann embarked on research of his own. He studied how CPU utilization correlates to power consumption in the cluster. For more than a year he collected data on the wattage drawn by the cluster’s primary servers, all Dell dual-CPU, quad-core machines, running their normal workload.

The comparison between machines at 100 percent CPU utilization is striking: Each of the data center’s rack-mounted Dell PowerEdge 1950 servers with Intel Xeon processor X5355 uses 369 watts. Its Dell PowerEdge M600 blade servers with Intel Xeon processor E5420 use 221 watts each. And its PowerEdge M610 blades with Intel Xeon processor E5520 use 201 watts. In three generations, PowerEdge servers reduced their power consumption by 168 watts, or 46 percent, at 100 percent CPU utilization.

“Across the board, from idle performance up to 100 percent CPU utilization, we see significant drops in power consumption on new Dell blade servers,” Pormann reports. “The form factor itself reduces energy needs because blades have fewer, larger, more efficient power supplies, and that’s clearly a factor in the sharp decline in power consumption that we see between the PowerEdge 1950 servers and the PowerEdge M610 blades.”

Comparing the Dell PowerEdge M600 blades with Intel Xeon processor E5420 and the PowerEdge M610 blades with Intel Xeon processor E5520 shows the difference a more efficient processor can make. “The across-the-board drop of roughly 20 watts is primarily attributable to CPU improvements,” says Pormann. “This suggests that all workloads would see significant improvements in energy savings from simply moving to the new CPUs. No matter what load is placed on the system, we should see significant reductions in power usage.”

$100,000-plus per year in energy cost savings

In addition to helping the DSCR stay in its current location, reducing servers’ power usage—both directly and by reducing air conditioning usage—saves the university money on an ongoing basis. “Even with North Carolina’s below-average power costs, we’re seeing savings of $100,000 or more per year, just by reducing our energy usage,” Pormann says.

As energy consumption falls, processing power grows dramatically with each new generation of Dell blades. “Every time we add a Dell PowerEdge M610 blade, we can pull older nodes from the cluster and retain the same processing power,” Pormann says. “When we buy new equipment, our users are always astounded at how much faster their jobs run. But we can’t directly calculate how many older nodes are comparable to a new blade. For one researcher, a new blade might replace eight older servers, but for another researcher that ratio might be 12 to 1.”

The DSCR just implemented six new 12-CPU-core PowerEdge M610 blades with Intel Xeon processor 5600 series and 96 gigabytes of memory per blade. “We’re really looking forward to seeing what they can do,” says Pormann. “Our early data indicates that they use no more power than our 8-CPU-core PowerEdge M610 blades with Intel Xeon processor E5520. So we should see a 50 percent increase in computational capability with zero increase in power consumption.”

Available capacity in the HPC cluster indicates that the new Dell PowerEdge blades are giving the cluster a substantial boost in processing power. Historically, the DSCR has run at about 70 percent of its total capacity. Since recent additions of Dell blades, utilization has declined to around 50 percent, so the cluster’s unused capacity has increased by as much as 30 percent. “Because we have more head room, we have the capability for researchers to do different kinds of experimentation,” says Pormann. “They don’t have to worry about wasting capacity anymore. They appreciate that whenever they need more computational power, it’s here.”

Pormann attributes the performance gains of the latest Dell servers to advancements, in part, in their management of memory. “More and more of our users are asking about large memory configurations,” he says. “It seems research projects are starting to be constrained by node memory performance and capacity. Over the last nine months, three different professors involved in bioinformatics have asked me whether they can get 256 or 512 gigabytes of memory in a single blade. One of them is working with images, each of which is on the order of a terabyte in size. I told them that systems with those memory configurations are on the Dell road map. The integrated memory controller and the Intel QuickPath architecture give the Dell blades exceptional bandwidth for memory processing.”

The DSCR further improves performance within the cluster using the Intel Compiler Suite. “We’re leveraging the Intel compilers as much as possible,” Pormann says. “What we’ve seen so far is that the Intel compilers, compared with the open source compilers, provide anywhere from 20 to 50 percent improvement in performance. You run the exact same C code through the Intel compiler, and the executable is faster. The Intel compilers seem to take advantage of all the bells and whistles in these new Intel processors.”

Server management tools bring additional efficiencies

Now Pormann is figuring out better ways to use the tools at his disposal to manage power for the cluster’s servers. The DSCR uses Dell Chassis Management Controller (CMC) to monitor energy consumption of the blades. Then IPMItool, an open source utility, exports this data to the Oracle Grid Engine. “Dell has its own add-ons to IPMItool,” Pormann says. “We were able to talk to the Dell engineering group, and they gave us information about the command line interfaces we could use to gather this data for Grid Engine.”

Pormann and his team currently can use Dell CMC to remotely control power usage within the cluster. “Dell CMC should enable us to easily power off machines and idle groups of machines to reduce the cluster’s overall heat load,” says Pormann.

The next step is to automate the process of powering off servers through Oracle Grid Engine. “An idle machine still uses more than 100 watts,” says Pormann. “Throttling the CPU may reduce power consumption, but it should be used in conjunction with powering off unused machines. And our systems should be capable of powering machines down automatically so someone doesn’t have to push buttons 24×7.  Knowing we have this potential in the blades helps us justify our continuing commitment to building out these tools.”

Mapping the cluster’s future

Duke purchases most of the cluster’s hardware from Dell for several reasons. One is the product road map from Dell and Intel. “We like Dell’s track record of always putting the newest equipment from Intel in their hardware,” Pormann says. “When Intel announces a new chip, we know we’re going to see it in Dell’s equipment shortly. Knowing what’s coming on those road maps enables us to spend our money very wisely.”

Perhaps the most important reason why the DSCR continues to purchase from Dell is that Pormann has always been pleased with the support he’s received. “Anytime we have a hardware issue, Dell cross-ships us parts and gives us access to engineers,” says Pormann. “As long as Dell and Intel continue to work on efficiency in the ratio of processing power to energy consumption, we’ll be able to continue to increase computational power, even as we stay in our current data center.”

For more information visit Dell.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This