Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

By Nicole Hemsoth

November 1, 2010

Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

Crunching large quantities of data is a crucial component of modern academic life. On university campuses, everyone from chemists and engineers to researchers in sociology, economics and even literature needs access to high-performance computing (HPC). At Duke University, the Duke Shared Cluster Resource (DSCR) supports these needs for professors across the spectrum.

The DSCR serves 650 end users in 70 different research groups. One major research area that the DSCR caters to is the bioinformatics community. “Several of our professors are doing genome comparisons,” says John Pormann, Duke’s director of scalable computing. “Some researchers are building models that establish probabilities for when certain genes arose—and when species with a common ancestor became distinct. One is trying to develop the tree of life for a set of fungi by looking at genetics.”

Many bioinformatics researchers need to process an unprecedented volume of data. “One of our professors is working with a grant agency that gives grant recipients the newest, fastest gene-sequencing machine, rather than offering a large amount of money,” Pormann says. “Professors receive a cutting-edge gene sequencer, which spits out enormous amounts of data. They depend on the DSCR to provide an HPC environment that supports their data analysis needs.”

Cutting-edge research using limited power

In its efforts to meet those needs, the DSCR faces substantial logistical challenges. The building that houses the data center was constructed to hold classrooms, not a server farm. The data center has already maxed out the amount of electricity that can run through the building’s conduit. Its floor is raised only 12 inches, and the last air conditioning installation involved overhead units because the installers weren’t convinced they could push enough air through the floor to keep all the equipment cool.

“If we exceed the capacity of our current air conditioning unit, we have to go back to the drawing board,” says Pormann. “Adding power to our current location would be expensive because we’d have to bring in new power lines from the street, digging up sidewalks and parking lots in the process. Moving to a new data center would cost well into the six figures. We’d like to stay where we are, but that means we need to use the power and cooling in that room as efficiently as possible. It’s imperative as we expand our computing power that we keep our power and cooling resources constant.”

168 fewer watts per server

The DSCR needs to maximize the ratio of processing power to energy consumption for servers in its HPC cluster. The cluster encompasses 729 servers, from Dell PowerEdge M610 blade servers with Intel Xeon processor 5600 series to seven-year-old rack-mounted boxes. Oracle Grid Engine dynamically provisions application workloads to the most appropriate resources in the cluster.

To gain insight into the DSCR’s balance between processing power and consumption of energy and cooling resources, Pormann embarked on research of his own. He studied how CPU utilization correlates to power consumption in the cluster. For more than a year he collected data on the wattage drawn by the cluster’s primary servers, all Dell dual-CPU, quad-core machines, running their normal workload.

The comparison between machines at 100 percent CPU utilization is striking: Each of the data center’s rack-mounted Dell PowerEdge 1950 servers with Intel Xeon processor X5355 uses 369 watts. Its Dell PowerEdge M600 blade servers with Intel Xeon processor E5420 use 221 watts each. And its PowerEdge M610 blades with Intel Xeon processor E5520 use 201 watts. In three generations, PowerEdge servers reduced their power consumption by 168 watts, or 46 percent, at 100 percent CPU utilization.

“Across the board, from idle performance up to 100 percent CPU utilization, we see significant drops in power consumption on new Dell blade servers,” Pormann reports. “The form factor itself reduces energy needs because blades have fewer, larger, more efficient power supplies, and that’s clearly a factor in the sharp decline in power consumption that we see between the PowerEdge 1950 servers and the PowerEdge M610 blades.”

Comparing the Dell PowerEdge M600 blades with Intel Xeon processor E5420 and the PowerEdge M610 blades with Intel Xeon processor E5520 shows the difference a more efficient processor can make. “The across-the-board drop of roughly 20 watts is primarily attributable to CPU improvements,” says Pormann. “This suggests that all workloads would see significant improvements in energy savings from simply moving to the new CPUs. No matter what load is placed on the system, we should see significant reductions in power usage.”

$100,000-plus per year in energy cost savings

In addition to helping the DSCR stay in its current location, reducing servers’ power usage—both directly and by reducing air conditioning usage—saves the university money on an ongoing basis. “Even with North Carolina’s below-average power costs, we’re seeing savings of $100,000 or more per year, just by reducing our energy usage,” Pormann says.

As energy consumption falls, processing power grows dramatically with each new generation of Dell blades. “Every time we add a Dell PowerEdge M610 blade, we can pull older nodes from the cluster and retain the same processing power,” Pormann says. “When we buy new equipment, our users are always astounded at how much faster their jobs run. But we can’t directly calculate how many older nodes are comparable to a new blade. For one researcher, a new blade might replace eight older servers, but for another researcher that ratio might be 12 to 1.”

The DSCR just implemented six new 12-CPU-core PowerEdge M610 blades with Intel Xeon processor 5600 series and 96 gigabytes of memory per blade. “We’re really looking forward to seeing what they can do,” says Pormann. “Our early data indicates that they use no more power than our 8-CPU-core PowerEdge M610 blades with Intel Xeon processor E5520. So we should see a 50 percent increase in computational capability with zero increase in power consumption.”

Available capacity in the HPC cluster indicates that the new Dell PowerEdge blades are giving the cluster a substantial boost in processing power. Historically, the DSCR has run at about 70 percent of its total capacity. Since recent additions of Dell blades, utilization has declined to around 50 percent, so the cluster’s unused capacity has increased by as much as 30 percent. “Because we have more head room, we have the capability for researchers to do different kinds of experimentation,” says Pormann. “They don’t have to worry about wasting capacity anymore. They appreciate that whenever they need more computational power, it’s here.”

Pormann attributes the performance gains of the latest Dell servers to advancements, in part, in their management of memory. “More and more of our users are asking about large memory configurations,” he says. “It seems research projects are starting to be constrained by node memory performance and capacity. Over the last nine months, three different professors involved in bioinformatics have asked me whether they can get 256 or 512 gigabytes of memory in a single blade. One of them is working with images, each of which is on the order of a terabyte in size. I told them that systems with those memory configurations are on the Dell road map. The integrated memory controller and the Intel QuickPath architecture give the Dell blades exceptional bandwidth for memory processing.”

The DSCR further improves performance within the cluster using the Intel Compiler Suite. “We’re leveraging the Intel compilers as much as possible,” Pormann says. “What we’ve seen so far is that the Intel compilers, compared with the open source compilers, provide anywhere from 20 to 50 percent improvement in performance. You run the exact same C code through the Intel compiler, and the executable is faster. The Intel compilers seem to take advantage of all the bells and whistles in these new Intel processors.”

Server management tools bring additional efficiencies

Now Pormann is figuring out better ways to use the tools at his disposal to manage power for the cluster’s servers. The DSCR uses Dell Chassis Management Controller (CMC) to monitor energy consumption of the blades. Then IPMItool, an open source utility, exports this data to the Oracle Grid Engine. “Dell has its own add-ons to IPMItool,” Pormann says. “We were able to talk to the Dell engineering group, and they gave us information about the command line interfaces we could use to gather this data for Grid Engine.”

Pormann and his team currently can use Dell CMC to remotely control power usage within the cluster. “Dell CMC should enable us to easily power off machines and idle groups of machines to reduce the cluster’s overall heat load,” says Pormann.

The next step is to automate the process of powering off servers through Oracle Grid Engine. “An idle machine still uses more than 100 watts,” says Pormann. “Throttling the CPU may reduce power consumption, but it should be used in conjunction with powering off unused machines. And our systems should be capable of powering machines down automatically so someone doesn’t have to push buttons 24×7.  Knowing we have this potential in the blades helps us justify our continuing commitment to building out these tools.”

Mapping the cluster’s future

Duke purchases most of the cluster’s hardware from Dell for several reasons. One is the product road map from Dell and Intel. “We like Dell’s track record of always putting the newest equipment from Intel in their hardware,” Pormann says. “When Intel announces a new chip, we know we’re going to see it in Dell’s equipment shortly. Knowing what’s coming on those road maps enables us to spend our money very wisely.”

Perhaps the most important reason why the DSCR continues to purchase from Dell is that Pormann has always been pleased with the support he’s received. “Anytime we have a hardware issue, Dell cross-ships us parts and gives us access to engineers,” says Pormann. “As long as Dell and Intel continue to work on efficiency in the ratio of processing power to energy consumption, we’ll be able to continue to increase computational power, even as we stay in our current data center.”

For more information visit Dell.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This