Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

By Nicole Hemsoth

November 1, 2010

Duke University anticipates $100,000 or more per year in energy savings, while increasing processing power.

Crunching large quantities of data is a crucial component of modern academic life. On university campuses, everyone from chemists and engineers to researchers in sociology, economics and even literature needs access to high-performance computing (HPC). At Duke University, the Duke Shared Cluster Resource (DSCR) supports these needs for professors across the spectrum.

The DSCR serves 650 end users in 70 different research groups. One major research area that the DSCR caters to is the bioinformatics community. “Several of our professors are doing genome comparisons,” says John Pormann, Duke’s director of scalable computing. “Some researchers are building models that establish probabilities for when certain genes arose—and when species with a common ancestor became distinct. One is trying to develop the tree of life for a set of fungi by looking at genetics.”

Many bioinformatics researchers need to process an unprecedented volume of data. “One of our professors is working with a grant agency that gives grant recipients the newest, fastest gene-sequencing machine, rather than offering a large amount of money,” Pormann says. “Professors receive a cutting-edge gene sequencer, which spits out enormous amounts of data. They depend on the DSCR to provide an HPC environment that supports their data analysis needs.”

Cutting-edge research using limited power

In its efforts to meet those needs, the DSCR faces substantial logistical challenges. The building that houses the data center was constructed to hold classrooms, not a server farm. The data center has already maxed out the amount of electricity that can run through the building’s conduit. Its floor is raised only 12 inches, and the last air conditioning installation involved overhead units because the installers weren’t convinced they could push enough air through the floor to keep all the equipment cool.

“If we exceed the capacity of our current air conditioning unit, we have to go back to the drawing board,” says Pormann. “Adding power to our current location would be expensive because we’d have to bring in new power lines from the street, digging up sidewalks and parking lots in the process. Moving to a new data center would cost well into the six figures. We’d like to stay where we are, but that means we need to use the power and cooling in that room as efficiently as possible. It’s imperative as we expand our computing power that we keep our power and cooling resources constant.”

168 fewer watts per server

The DSCR needs to maximize the ratio of processing power to energy consumption for servers in its HPC cluster. The cluster encompasses 729 servers, from Dell PowerEdge M610 blade servers with Intel Xeon processor 5600 series to seven-year-old rack-mounted boxes. Oracle Grid Engine dynamically provisions application workloads to the most appropriate resources in the cluster.

To gain insight into the DSCR’s balance between processing power and consumption of energy and cooling resources, Pormann embarked on research of his own. He studied how CPU utilization correlates to power consumption in the cluster. For more than a year he collected data on the wattage drawn by the cluster’s primary servers, all Dell dual-CPU, quad-core machines, running their normal workload.

The comparison between machines at 100 percent CPU utilization is striking: Each of the data center’s rack-mounted Dell PowerEdge 1950 servers with Intel Xeon processor X5355 uses 369 watts. Its Dell PowerEdge M600 blade servers with Intel Xeon processor E5420 use 221 watts each. And its PowerEdge M610 blades with Intel Xeon processor E5520 use 201 watts. In three generations, PowerEdge servers reduced their power consumption by 168 watts, or 46 percent, at 100 percent CPU utilization.

“Across the board, from idle performance up to 100 percent CPU utilization, we see significant drops in power consumption on new Dell blade servers,” Pormann reports. “The form factor itself reduces energy needs because blades have fewer, larger, more efficient power supplies, and that’s clearly a factor in the sharp decline in power consumption that we see between the PowerEdge 1950 servers and the PowerEdge M610 blades.”

Comparing the Dell PowerEdge M600 blades with Intel Xeon processor E5420 and the PowerEdge M610 blades with Intel Xeon processor E5520 shows the difference a more efficient processor can make. “The across-the-board drop of roughly 20 watts is primarily attributable to CPU improvements,” says Pormann. “This suggests that all workloads would see significant improvements in energy savings from simply moving to the new CPUs. No matter what load is placed on the system, we should see significant reductions in power usage.”

$100,000-plus per year in energy cost savings

In addition to helping the DSCR stay in its current location, reducing servers’ power usage—both directly and by reducing air conditioning usage—saves the university money on an ongoing basis. “Even with North Carolina’s below-average power costs, we’re seeing savings of $100,000 or more per year, just by reducing our energy usage,” Pormann says.

As energy consumption falls, processing power grows dramatically with each new generation of Dell blades. “Every time we add a Dell PowerEdge M610 blade, we can pull older nodes from the cluster and retain the same processing power,” Pormann says. “When we buy new equipment, our users are always astounded at how much faster their jobs run. But we can’t directly calculate how many older nodes are comparable to a new blade. For one researcher, a new blade might replace eight older servers, but for another researcher that ratio might be 12 to 1.”

The DSCR just implemented six new 12-CPU-core PowerEdge M610 blades with Intel Xeon processor 5600 series and 96 gigabytes of memory per blade. “We’re really looking forward to seeing what they can do,” says Pormann. “Our early data indicates that they use no more power than our 8-CPU-core PowerEdge M610 blades with Intel Xeon processor E5520. So we should see a 50 percent increase in computational capability with zero increase in power consumption.”

Available capacity in the HPC cluster indicates that the new Dell PowerEdge blades are giving the cluster a substantial boost in processing power. Historically, the DSCR has run at about 70 percent of its total capacity. Since recent additions of Dell blades, utilization has declined to around 50 percent, so the cluster’s unused capacity has increased by as much as 30 percent. “Because we have more head room, we have the capability for researchers to do different kinds of experimentation,” says Pormann. “They don’t have to worry about wasting capacity anymore. They appreciate that whenever they need more computational power, it’s here.”

Pormann attributes the performance gains of the latest Dell servers to advancements, in part, in their management of memory. “More and more of our users are asking about large memory configurations,” he says. “It seems research projects are starting to be constrained by node memory performance and capacity. Over the last nine months, three different professors involved in bioinformatics have asked me whether they can get 256 or 512 gigabytes of memory in a single blade. One of them is working with images, each of which is on the order of a terabyte in size. I told them that systems with those memory configurations are on the Dell road map. The integrated memory controller and the Intel QuickPath architecture give the Dell blades exceptional bandwidth for memory processing.”

The DSCR further improves performance within the cluster using the Intel Compiler Suite. “We’re leveraging the Intel compilers as much as possible,” Pormann says. “What we’ve seen so far is that the Intel compilers, compared with the open source compilers, provide anywhere from 20 to 50 percent improvement in performance. You run the exact same C code through the Intel compiler, and the executable is faster. The Intel compilers seem to take advantage of all the bells and whistles in these new Intel processors.”

Server management tools bring additional efficiencies

Now Pormann is figuring out better ways to use the tools at his disposal to manage power for the cluster’s servers. The DSCR uses Dell Chassis Management Controller (CMC) to monitor energy consumption of the blades. Then IPMItool, an open source utility, exports this data to the Oracle Grid Engine. “Dell has its own add-ons to IPMItool,” Pormann says. “We were able to talk to the Dell engineering group, and they gave us information about the command line interfaces we could use to gather this data for Grid Engine.”

Pormann and his team currently can use Dell CMC to remotely control power usage within the cluster. “Dell CMC should enable us to easily power off machines and idle groups of machines to reduce the cluster’s overall heat load,” says Pormann.

The next step is to automate the process of powering off servers through Oracle Grid Engine. “An idle machine still uses more than 100 watts,” says Pormann. “Throttling the CPU may reduce power consumption, but it should be used in conjunction with powering off unused machines. And our systems should be capable of powering machines down automatically so someone doesn’t have to push buttons 24×7.  Knowing we have this potential in the blades helps us justify our continuing commitment to building out these tools.”

Mapping the cluster’s future

Duke purchases most of the cluster’s hardware from Dell for several reasons. One is the product road map from Dell and Intel. “We like Dell’s track record of always putting the newest equipment from Intel in their hardware,” Pormann says. “When Intel announces a new chip, we know we’re going to see it in Dell’s equipment shortly. Knowing what’s coming on those road maps enables us to spend our money very wisely.”

Perhaps the most important reason why the DSCR continues to purchase from Dell is that Pormann has always been pleased with the support he’s received. “Anytime we have a hardware issue, Dell cross-ships us parts and gives us access to engineers,” says Pormann. “As long as Dell and Intel continue to work on efficiency in the ratio of processing power to energy consumption, we’ll be able to continue to increase computational power, even as we stay in our current data center.”

For more information visit Dell.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This