Should I Buy GPGPUs or Blue Gene?

By Christopher Lazou

November 4, 2010

The new Tianhe-1A Chinese system with a Linpack performance of 2.5 petaflops, placing it in the number one spot of the new TOP500 list to be presented at SC10 in New Orleans this month, has put “the cat amongst the pigeons” — or should I say the “River in the Sky” — as far as HPC politics in the USA are concerned. But away from the headlines there might be a more tempered reality.

I received a paper from the Department of Computer Science at the University of Warwick, a shorter version of which recently won Best Paper at the Daresbury GPU workshop. An extended version is to be presented at the PMBS workshop at SC10 on Monday, November 15. This paper, “Performance Analysis of a Hybrid MPI/CUDA Implementation of the NAS-LU Benchmark,” (PDF) describes some interesting work being done at Warwick and with access to machines at Lawrence Livermore National Laboratory (LLNL). Essentially their study asks the question: As an organization, should I commit to a platform based on general-purpose GPUs (GPGPUs) or an IBM Blue Gene?

In procuring a new supercomputer, one takes many factors into consideration. Performance, availability and software; potential of the system for future scientific delivery; and viability of the company marketing it, are but a few. This is why the odds are often stacked in favor of established companies to deliver the next successful product. The Dahrendorf dictum that “history proceeds by changing the subject,” however, provides the necessary optimism for aspiring new vendors of radical architectures. And there is a lot of fast-moving history happening in HPC.

As the reader knows there are lots of technical issues tied up in evaluating computer systems and making an informed decision: CPU speed, memory size and bandwidth, communication latency, scalability, capability, electrical power consumption, ease of supporting legacy code, etc. Indeed one needs to take on board the integral of all resources that contribute to the total cost of ownership (TCO). I think this study from the University of Warwick potentially captures the essence of the interesting crossroads at which current HPC finds itself, as ORNL, LLNL and others are now demonstrating.

Using benchmarking and performance modeling, the Warwick team was able to address some of the underlying technical issues, speculating as to the likely performance and power footprint of possible large-scale solutions based on GPGPU and Blue Gene platforms.

Before I offer a perspective of their findings let me clarify what the Warwick study focuses on. After discussing the potential problems facing the HPC industry in its aspiration to deliver exascale systems by 2015-18, they then compared the performance of pipelined wavefront computations (a class of parallel application), running across multiple GPU nodes against an InfiniBand-based cluster of AMD processors and an IBM Blue Gene/P. They augment these runtimes with projections from a recently-developed analytical model of NAS-LU, a computational fluid dynamics benchmark that employs the wavefront algorithm. This study says nothing about other mainstream supercomputers from IBM, Cray, HP, SGI, NEC, Fujitsu, and so on, or other classes of computations, but one can clearly see where their work is heading.

As the reader is aware an interesting race is emerging in supercomputing. In 2011/12 Lawrence Livermore National Laboratory will deploy their 20 petaflops Blue Gene/Q Sequoia system based on future IBM Blue Gene technology. At the same time, Nebulae and Tianhe-1A at the Chinese National Supercomputing Centers and, at a future date, Jaguar at the Oak Ridge Leadership Computing Facility (OLCF), are employing NVIDIA GPUs to attain multi-petaflops systems.

Of course large computing facilities such as LLNL and OLCF buy both, but for those organizations with more modest budgets, a choice must be made?

What makes these architectures different?

The Blue Gene, currently in its fourth technology iteration, owes its design to a previous debate in the late 1990s on how to achieve petaflops for a specific application, namely protein folding. At that time, general-purpose computers could not deliver the needed performance within reasonable power and footprint constraints. To overcome these constraints IBM aptly adopted a reduced instruction set design. To paraphrase Einstein: “A computer (theory) should be as simple as possible, but not simpler.”

The Blue Gene approach to building large supercomputers is to take a large number of relatively-simple processing cores and to connect these via a low latency, highly-scalable interconnect. This has the advantage of creating a high aggregate memory bandwidth (as each core is connected directly to its own memory) whilst maintaining low power consumption because of the low clock frequency and simple design of the processor. The simple nature of the cores makes porting of existing MPI-based codes easier as few modifications are needed, assuming the code presents good scalability. In order to maintain efficient power usage and use of physical space, the Blue Gene/P has a maximum limit of 1GB of memory per execution core.

The Blue Gene architecture is highly rated. The project was awarded the National Medal of Technology and Innovation by U.S. President Barack Obama in late 2009. Its main architect, Alan Gara, is to be awarded the prestigious Seymour Cray medal by IEEE at this year’s Supercomputing Conference in New Orleans.

In contrast, GPU-based machines are being produced from high-end designs based on consumer-grade video and graphics cards — an example of history proceeding by changing the subject. Because of the significant economies, this has the potential to offer high performance at lower cost. The approach utilizes parallelism in the form of a large number of lightweight threads which provide good performance provided each thread executes the same instructions. If the control flow diverges, the penalties can be very costly. In a sense these are a modern equivalent of vector processors but with the ability to simultaneously execute considerably larger numbers of instructions. Currently, most GPU clusters are small scale and are connected by InfiniBand, which requires messages to be copied from the GPU to the main host memory and then from the memory to the remote node.

This “double-penalty” creates a high cost in exchanging data between cards, unlike the Blue Gene system where the low latency interconnect makes message passing relatively inexpensive. The high compute power per GPU concentrates the equivalent processing power into fewer numbers of nodes helping to reduce, but not eliminate, the scalability requirements of the application. However, where communication is needed it is expensive, creating significant problems for applications which need to scale to thousands of GPU devices. Current GPU designs have either 3 GB or 6 GB of memory which, when divided between the execution threads, yields a very small amount of memory per thread — considerably less than conventional clusters based on general-purpose processors or a Blue Gene/P system.

The GPGPU-Blue Gene debate is not simply one of hardware. Application developers are also preparing for change. For many years HPC experts have warned that performance gains to applications from higher clock speeds and more memory per core, such as that seen in the blistering Intel Westmere, are not guaranteed in future architectures. The Blue Gene/P typically has 1 GB of memory per core, which for many application developers is like squeezing an elephant into a mini. An investment is needed to modify the application code to meet this memory constraint. GPU solutions require an even tighter squeeze (6 GB shared memory per 448-core device), not to mention the contortion needed to engineer core code kernels for the GPUs (whilst avoiding canceling out any benefits because of data transfers, etc).

Given that HPC code development and maintenance is the bread and butter of supercomputing programs, and occupies the largest proportion of the overall cost, it is not unreasonable to ask in which direction we should be steering application effort.

What can be learned from current Blue Gene and GPU-based systems?

There are significant installations of both Blue Gene and GPU-based systems. In the June TOP500 list, Lawrence Livermore’s Dawn system, based on Blue Gene/P, clocked in at 415 teraflops and Nebulae, based on GPUs, clocked in at 1.271 petaflops. So what lessons if any can be drawn from these systems?
 
The study from the University of Warwick addresses this question: “Given what we can benchmark on current GPUs and Blue Genes, can we model how an application will behave on such systems at petascale?” The authors of this study, Pennycook, Hammond, Mudalige and Jarvis consider not only what this means in terms of raw performance, or time to solution, but also what this costs in terms of power budget.

Pennycook and his colleagues ask how many Blue Gene cores are needed to get equivalent performance to that achievable from a GPU-based solution. Their work uses extensive benchmarking of HPC-capable GPUs, including the NVIDIA C2050 built on the ‘Fermi’ architecture, alongside Nehalem-class CPUs and the Dawn Blue Gene/P system at LLNL. Performance models are built, for each class of system, which allow them to investigate the performance of applications at scale. Such performance modeling techniques are also used in benchmarking and procurement.

Their work provides some eye-catching results:

1. Taking the NAS-LU parallel benchmark code as an example, the equivalent Class E time-to-solution requires a Blue Gene/P to have 8,192 cores compared to 256 Tesla C2050 cores, 32 times more processing elements than a GPU-based system. This large difference may tempt you, but before running to your nearest GPU outlet to place an order, reflect on this: the processing elements of the Blue Gene solution require around 33 kW, whereas the smaller GPU system requires a maximum of 60 kW.

2. The theoretical peak of the GPU solution is nearly five times that of the Blue Gene. Is this another reason to visit the GPU store? If you are interested in your position in the TOP500 List, then yes, go GPU, but if you are interested in higher sustained performance as a percentage of peak then proceed with caution. The GPU solution clearly outguns the Blue Gene on peak, but achieves an equivalent time-to-solution in the NAS benchmark test.

3. Peak versus actual performance is hotly debated, and this study stokes the fire. The performance results of China’s Nebulae system are revealing, and supportive of this argument. The machine has a theoretical peak of nearly 3 petaflops, but Linpack can currently only deliver 1.271 petaflops of that peak. In contrast the Dawn Blue Gene/P at LLNL has a theoretical peak of 0.5 petaflops and delivers a Linpack performance of 0.415 petaflops. This begs the question: what hope is there for applications, and should an organization be investing in peak or in achievable?

4. GPU single-node performance is second to none. Pennycook et al acknowledge that the single node performance of a GPU is a real win. The same NAS-LU example ran approximately 7 times quicker on the GPU than it did on state-of-the-art CPU-only solutions from Intel and AMD.

But Pennycook is quick to point out that “these headline figures often fail to consider interconnect overheads; we still need to connect these GPUs somehow.”

An interesting observation in their results is that the Blue Gene scales well. So much so that at around 16,000 Blue Gene/P cores, the equivalent time to solution would only need four times fewer GPU processing elements. What this demonstrates is that the GPU-to-Blue Gene ratio is high for smaller systems, but it decreases as the systems get larger. This is significant in terms of power; 16,000 Blue Gene cores require around 66 kW, 4,000 Tesla C2050s require a maximum of 974 kW.

So where does this lead?

The authors of this study state: “The performance of these architectures raises interesting questions about the future direction of HPC architectures – in one case we might expect smaller clusters of SIMT or GPU-based solutions which will favor kernels of highly vectorized code or, alternatively, we might expect highly parallel solutions typified by the Blue Gene/P, where ‘many-core’ will mean massively parallel quantities of independently operating cores.”

The Pennycook study is application specific, “but at the end of the day this is what these supercomputers are designed to support,” he says. Their work is also being extended to applications from Rolls-Royce, AWE and others.

Re-engineering applications for both types of platforms requires significant investment: Blue Genes are memory constrained, have low clock rates and clearly excel at scale, which our current algorithms in many cases do not. GPUs on the other hand require the careful porting of core kernels, which will undoubtedly result in performance gains, but nevertheless needs clustering through effective interconnects, else any gains will be lost.

So what is it going to be, GPU or Blue Gene? It all depends on the size of the system. On first inspection, the GPUs show promising power efficiency, but this is just half the story. Utilizing the available peak of a GPU is a difficult challenge. The Blue Gene, however, is closer to traditional designs, so realizing performance on these platforms presents fewer programming challenges, as long as the algorithms themselves scale.

In my view, this study by the University of Warwick is an invaluable contribution to the debate about emerging architectures and algorithms, in which the HPC industry needs to engage in its pursuit of exascale systems.
 
Enough for now. Just go along to the PMBS 10 workshop on Monday, November 15, in New Orleans and join the debate.

Note: The International Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems workshop (PMBS 10) is part of the SC10 Technical Program. The workshop will take place on Monday, November 15, in rooms 278/279 of the Ernest N. Morial Convention Centre in New Orleans, La.

—–

Copyright ©: Christopher Lazou

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This