Cloud Security: The Federated Identity Factor

By Patrick Harding and Gunnar Peterson

November 9, 2010

The Web has experienced remarkable innovation during the last two decades. Web application pioneers have given the world the ability to share more data in more dynamic fashion with greater and greater levels of structure and reliability, yet the digital security mechanisms that protect the data being served have remained remarkably static.  We have finally reached the point where traditional web security can no longer protect our interests, as our corporate data now moves and rests between a web of physical and network locations, many of which are only indirectly controlled and protected by the primary data owner.

How have web applications evolved to de-emphasize security, and why has greater security become critical today?  The answer comes by exploring common practices and comparing them to the best practices that are becoming the heir to throne of web application security: Federated Identity. 

A Brief History of Web Applications

Commercial use of the World Wide Web began in the early 1990’s with the debut of the browser. The browser made the Web accessible to the masses, and businesses began aggressively populating the Web with a wealth of static HyperText Markup Language (HTML) content.  

Recognizing the untapped potential of a worldwide data network, software vendors began to innovate.  By the mid-1990’s, dynamic functionality became available via scripting languages like the Common Gateway Interface (CGI) and Perl. ”Front-end” Web applications accessed data stored on “back-end” servers and mainframes. The security practice of “armoring” servers and connections began here, by building firewalls to protect servers and networks, and creating SSL (Secure Sockets Layer) to protect connections on the wire.

The Web continued to grow in sophistication: Active Server Pages (ASP) and JavaServer Pages (JSP) allowed applications to become substantially more sophisticated.  Purpose-built, transaction-oriented Web application servers emerged next, like Enterprise JavaBeans (EJB) and the Distributed Component Object Model (DCOM), making it easier to integrate data from multiple sources.  The need to structure data became strong and protocols like Simple Object Access Protocol (SOAP) and the eXtensible Markup Language (XML) emerged in 1999. 

From 2001 to present, services evolved as a delivery model that de-emphasized the physical proximity of servers to clients, and instead emphasized loosely coupled interfaces.  Services-Oriented Architecture (SOA) and the Representational State Transfer (REST) architectures both allow interaction between servers, businesses and domains, and combined with advances in latency and performance that accompanied the Web 2.0 movement, the foundation was laid.

These innovations have all helped enable the “cloud.” The concept of a cloud has long been used to depict the Internet, but this cloud is different.  It embodies the ability of an organization to outsource both virtual and physical needs.  Applications that once ran entirely on internal servers are now provided via Software-as-a-Service (SaaS).  Platforms and Infrastructure are now also available as PaaS and IaaS offerings, respectively. 

During all of these advances, one aspect of the Web has remained relatively static:  the layers of security provided by firewalls, and the Secure Socket Layer (SSL).  To be sure, there have been advances in Web security.  Firewalls have become far more sophisticated with Deep Packet Inspection and intrusion detection/prevention capabilities, and SSL has evolved into Transport Layer Security (TLS) with support for the Advanced Encryption Standard.  But are these modest advances sufficient to secure today’s cloud? 

Year
Web Application Software
Web Security Provisions
1995
CGI/Perl
Firewall & SSL
1997
JSP/ASP
Firewall & SSL
1998
EJB/DCOM
Firewall & SSL
1999
SOAP/XML
Firewall & SSL
2001
SOA/REST
Firewall & SSL
2003
Web 2.0
Firewall & SSL
2009
Cloud
???

This table summarizes the tremendous innovation that has taken place in Web application software over the years while relatively little innovation occurred in Web security. 

The Web’s “security status quo” is well understood by those advancing the state-of-the-art in Web applications.  For example, SOAP was designed to be a firewall-friendly protocol.  But as Bruce Schneier, the internationally renowned security technologist, observed, “Calling SOAP a firewall-friendly protocol is like having a skull-friendly bullet.” 

Schneier’s tongue-in-cheek comment highlights a serious problem. While firewalls, NAT and SSL/TLS are necessary for securing the Web, they are no longer sufficient for securing cloud-based applications.  This lack of innovation forces SaaS and other service providers to rely on the so-called “strong password” for security.  “Strong” password may be great in theory, but they can create serious problems in practice. 

The Problem with Passwords

For the sake of discussion here, a “strong” password is defined as one consisting of a combination of numbers and letters (with some capitalized) that does not spell any word or contain any discernable sequence.  How many strong passwords  is a mere mortal expected to memorize, given that writing down or otherwise recording passwords defeats the idea of a shared secret?

The average enterprise employee used 12 UserID/password pairs for accessing the many applications required to perform his or her job (Osterman Research 2009).  It is unreasonable to expect anyone to create, regularly change (also a prudent security practice) and memorize a dozen passwords, but is considered today to be a common practice.  Users are forced to take short-cuts, such as using the same UserID and password for all applications, or writing down their many strong passwords on Post-It notes or, even worse, in a file on their desktop or smartphone. 

Even if most users could memorize several strong passwords, there remains risk to the organization when passwords are used to access services externally (beyond the firewall) where they can be phished, intercepted or otherwise stolen.  The underlying problem with passwords is that they work well only in “small” spaces; that is, in environments that have other means to mitigate risk.  Consider as an analogy the bank vault.  Its combination is the equivalent of a strong password, and is capable of adequately protecting the vault’s contents if, and only if, there are other layers of security at the bank. 

Such other layers of security also exist within the enterprise in the form of locked doors, receptionists, ID badges, security guards, video surveillance, etc.  These layers of security explain why losing a laptop PC in a public place can be a real problem (and why vaults are never located outside of banks!). 

Ideally, these same layers of internal security could also be put to use securing access to external cloud-based applications.  Also ideally, users could then be asked to remember only one strong password (like the bank vault combination), or use just one method of multi-factor authentication.  And ideally, the IT department could administer user access controls for all internal and external applications centrally via a common directory (and no longer be burdened by constant calls to the Help Desk from users trying to recall so many different passwords). 

One innovation in Internet security makes this ideal a practical reality:  federated identity. 

Federated Identity Secures the Cloud

Parsing “federated identity” into its two constituent words reveals the power behind this approach to securing the cloud.  The identity is of an individual user, which is the basis for both authentication (the credentials for establishing the user is who he/she claims to be) and authorization (the applications permitted for use by specific users).  Federation involves a set of standards that allows identity-related information to be shared securely between parties, in this case:  the enterprise and cloud-based service providers. 

The major advantage of federated identity is that it enables the enterprise to maintain full and centralized control over access to all applications, whether internal or external. The IT department also controls how users authenticate, including whatever credentials may be required.  A related advantage is that, with all access control provisions fully centralized, “on-boarding” (adding new employees) and “off-boarding” (terminating employees) become at once more secure and substantially easier to perform. 

Identity-related information is shared between the enterprise and cloud-based providers through security tokens; not the physical kind, but as cryptographically encoded and digitally signed documents (e.g. XML-based SAML tokens) that contain data about a user.  Under this trust model, the good guys have good documents (security tokens) from a trusted source; the bad guys never do.  For this reason, both the enterprise and the service providers are protected. 

To ensure integrity while also affording sufficient flexibility, the security tokens are quite extensive.  For example, the Security Association Markup Language (SAML) standard includes the following elements in its security token:  Issuer (e.g. the enterprise); One-time Use Password; Validity Window (time period when valid); Subject (the user); Context (how the user authenticated); Claims (attributes about the user); and Integrity (digital signature with encryption for confidentiality).  The Claims section is like a “scribble pad” for specifying a wide variety of user attributes that can be used by the application for different purposes such as authorization, personalization or even provisioning a new account.  Indeed, some believe that identity-related Attributes are so significant for Cloud security, that they should become a fourth “A” in AAA systems. 

Two Basic Roles

In the cloud, there are always (at a minimum) two parties.  In fact, “two” serves as the theme for the remainder of this section that explains what federated identity is and how it works. 

The two basic roles are the Identity Provider (IdP) and the Relying Party (RP).  The Identity Provider is the authoritative source of the identity information contained in the security tokens; in this case:  the enterprise.  The Relying Parties (the service providers) establish relationships with one or more Identity Providers and  accept the security tokens containing the assertions needed to govern access control. 

The authoritative nature of and the structured relationship between the two parties is fundamental to federated identity.  Based on the trust established between the Relying Parties and the Identity Providers, the Relying Parties have full confidence in the security tokens issued.  This is not unlike the trust the public places in a driver’s license issued by the Department of Motor Vehicles.

The First and Last Mile

These two distinct IdP and RP roles have led some to refer to the first and last “miles” in federated identity.  The “First Mile” is where the process originates:  at the enterprise as the Identity Provider.  It is in this First Mile where the Authentication Service is integrated with the Security Token Service.  The “Last Mile” is at the receiving end:  at the Relying Party or service provider where the data contained in the security token is integrated with the target application infrastructure (particularly its access control provisions). 

Two Basic Operations

Federated identity has two basic operations:  Issuing and validating the security tokens.  Based on an input or request, the Identity Provider issues a security token.  For example, a UserID/password could generate a cookie, or a Kerberos Ticket could generate a SAML Token.  The Relying Party then validates the security token to ensure it is issued by a trusted authority, properly signed, still in effect (not expired), intended for the right audience, etc. 

Two Methods of Exchange

Security tokens can be exchanged in two different ways:  passive and active.  Passive exchanges are those initiated from a browser, which becomes the “passive” client.  Common mechanisms for passive exchanges include SAML (the protocol) via Browser POST, Redirect or Artifact Binding.  Active exchanges, as the name implies, require the client to play a more active role and can  initiate web service requests.  Normally this done through an Application Programming Interface (API) specified in standards like WS-Trust or OAuth. 

The actual exchange, whether passive or active, is performed using standard protocols.  In addition to the obvious send and receive functions, these protocols can also request a token, request a response, and even transform tokens in various ways.  Examples of such standards include SAML, WS-Federation, WS-Trust, OAuth and OpenID.  With so many options, it is not uncommon for a Security Token Service to support multiple protocols and multiple endpoints, and for a single security token to pass through multiple STS endpoints and be transformed multiple times. 

Two Base Use Cases

The two most common use cases for federated identity are Single Sign-On (SSO) and API Security.  As the name implies, SSO allows users to sign on once (with a strong password or other credentials), then access all authorized applications (internal and external) via a portal or other convenient means of navigation.  Because it is browser-based, SSO generally employs SAML or WS-Federation with passive exchange redirects to the Security Token Service. 

API Security requires an active client or server that directly contacts the STS via Web services.  The popular standards include WS-Trust, OAuth and REST.  As with SSO, the claims asserted in the security token can be used to set up a session and/or provision an account.  Unlike with SSO, the claims can also be used for server-to-server applications, or by a service acting as (or on behalf of) a user. 

In Conclusion

As the popularity of cloud-based applications continues to grow, IT departments will increasingly turn to federated identity as the preferred means for managing access control.  With federated identity, users and the IT staff both benefit from greater convenience and productivity.  Users log in only once, remembering only one strong password, to access all authorized applications.  The IT staff gains full, centralized control over all access privileges for both internal and external applications, and is no longer burdened with constant calls to the Help Desk from users forgetting their passwords. 

The most important aspect of federated identity is not its ease of use, however; it is the enhanced security.  Standards like SAML and WS-Federation were purpose-built to provide robust security in the cloud.  They keep authentication strong and securely within the enterprise firewall.  They eliminate the need to maintain sensitive access control information external to the organization.  They enable successful on- and off-boarding of all employees on a common directory server.  They make it easier to pass security audits by giving full visibility into user access.  They afford the flexibility needed to accommodate special or unusual needs.  And they scale without adding significant cost or increased complexity. 

About the Authors

Patrick Harding, CTO, Ping Identity

Harding brings more than 20 years of experience in software development, networking infrastructure and information security to the role of Chief Technology Officer for Ping Identity. Harding is responsible for Ping Identity’s technology strategy. Previously, Harding was a vice president and security architect at Fidelity Investments where he was responsible for aligning identity management and security technologies with the strategic goals of the business. Harding was integrally involved with the implementation of federated identity technologies at Fidelity — from “napkin” to production. An active leader in the Identity Security space, Harding is a Founding Board Member for the Information Card Foundation, a member of the Cloud Security Alliance Board of Advisors, on the steering committee for OASIS and actively involved in the Kantara Initiative and Project Concordia. He is a regular speaker at RSA, Digital ID World, SaaS Summit, Burton Catalyst and other conferences. Harding holds a BS Degree in Computer Science from the University of New South Wales in Sydney, Australia.

*Arctec Group Managing Principal Gunnar Peterson also contributed to the content of this article. 

To learn more about Identity’s role in Cloud Security, see the Cloud Security Institute’s “Cloud Security:  The Identity Factor” Webinar.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC impact at SC18. Most noteworthy is that five of 13 CAAR applic Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

CEA’s Pick of ThunderX2-based Atos System Boosts Arm

November 8, 2018

Europe’s bet on Arm took another step forward today with selection of an Atos BullSequana X1310 system by CEA’s (French Alternative Energies and Atomic Ener Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This