Convey Debuts Second-Generation Hybrid-Core Platform

By Michael Feldman

November 9, 2010

In an HPC market that seems determined to go down the CPU-GPU path, upstart Convey Computer may yet offer a few surprises. The company today unveiled the sequel to its HC-1 platform it introduced in 2008. Called the HC-1ex, the new system adds a lot more performance and capability, but retains the original x86-FPGA co-processor design.

Convey’s first HC-1 design, unveiled at SC08, began production shipment in 2009. Although still in startup mode, Convey seems to be on sound financial footing. They collected their second round of funding last summer, bringing their total to $40 million. Since then the company has increased its head count from 25 to 55.

According to company president and CEO Bruce Toal, they now have roughly 30 customer deployments, ranging from single units up to 8-node clusters. The majority of the systems have been installed for bioinformatics, government and research applications, with financial services, energy and logic simulation also represented.

Because of the platform’s malleability, it can serve virtually any HPC application domain. The basic concept is to offer a standard x86 server platform, but accelerated by FPGAs in the guise of a co-processor. For a specific application domain (or even just a single application), the FPGAs are programmed to extend the x86 ISA with custom instructions intended to accelerate the target software. These instructions are then generated by the Convey tools during source compilation. It’s a nifty little design, and worlds away from the more typical FPGAs-as-an-afterthought HPC approach that has been used in the past.

The CPU and FPGAs are glued together via the shared memory subsystem, which blends the x86 memory to the customized high performance memory on the co-processor side. This allows both of them to work within the same cache-coherent shared memory space. The approach is quite different from a conventional HPC accelerator, which typically treats the FPGA, GPGPU, or whatever as an I/O device, hanging off a PCI-Express slot. In Convey’s model, the FPGAs are virtualized and act as a true co-processor. “It enables you to build a completely integrated compiled environment, which we believe is a fundamental element for hybrid computing,” explains Toal.

The HC-1ex is the higher end version of the HC-1 but, according to Toal, is not a replacement for the original. In the second-generation product, the company has upgraded the dual-core Xeon to a quad-core part, and increased CPU memory capacity from 64 GB to 128 GB. More importantly, though, the HC-1ex has moved up to the latest generation Xilinx Virtex-6 FPGA (the LX760) from the Virtex-5 part (the LX330) in the original HC-1. The newer 40nm FPGA offers more that three times the gates of its predecessor.

Assuming the application can take advantage of those additional gates, that translates to higher absolute performance, better price-performance and increased performance per watt. For example, using a Smith-Waterman search (a nucleotide sequencing algorithm that scales extremely well on FPGAs), the HC-1ex performed 401 times faster than a single-core Intel CPU. That’s more than twice the performance of the HC-1. The general idea is to replace multiple racks of conventional servers with a single rack of Convey gear, so as to reduce floor space requirements, power usage and overall total cost of ownership (TCO).

The first HC-1ex was deployed at Georgia Tech in September. Rich Vuduc, assistant professor School of Computational Science and Engineering, is leading a research team to apply heterogeneous computing systems to data analysis and data mining applications. With the HC-1ex , Vuduc is developing a custom FPGA personality for his particular data analytics domain. The work is being partly funded under a DARPA contract, so one could surmise the work could end up in some interesting defense- or security-related applications .

Beyond the HC-1ex unveiling, Convey is also announcing some new partnerships this week. These include Panasas, AutoESL, Impulse, Jacquard Computing, and Voci Technologies. The Panasas collaboration will bring the company’s storage client software into the Convey OS and cluster framework software. The next three, AutoESL, Impulse and Jacquard, are providing higher level FPGA programming tools to help develop co-processor personalities.

The last-mentioned partner, Voci, is actually OEMing the Convey gear in the form of a speech recognition appliance. Called V-Blaze, the appliance can process a hundred phone conversations in real time and convert the conversations to text. The idea here is to be to transform phone conversations into text, which can then be keyword searched for further analysis. One application would be call center monitoring. Purportedly, the V-Blaze appliance delivers much better resolution and lower error rates than commercial voice recognition products. That’s 100x better than a single CPU could accomplish and perhaps 10x better than a GPGPU implementation.

The Voci collaboration is a good example of how Convey can expand its market other than through direct end user sales. But Toal does expect to see sizable growth in such sales over the next year, thanks to a larger distribution channel and the additional technology partnerships, not to mention the new HC-1ex offering. Fighting the GPGPU juggernaut won’t be easy, but the true believers at Convey seem determined to do so.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This