The Business of Disruptive Innovation

By Michael Feldman

November 14, 2010

Like every technology-based sector, high performance computing takes its biggest leaps by the force of disruptive innovation, a term coined by the man who will keynote this year’s Supercomputing Conference (SC10) in New Orleans. Clayton M. Christensen doesn’t know a whole lot about supercomputing, but he knows a great deal about the forces that drive it.

For the past 15 years, Christensen, a professor at the Harvard Business School, has been studying how technological innovation works, how it can drive some businesses to succeed, and how it can cause others to fail spectacularly. Today he is considered one of the leading experts on innovation. At SC10, he will attempt to impart some of this wisdom to the HPC faithful.

Not a techno-geek by any means, Christensen’s focus is on the businesses end of disruptive innovation. In 1997 he penned his first book on the subject, The Innovator’s Dilemma, wherein he describes the challenges of managing innovation. Since then he’s developed a set of well-respected theories on innovation and has published a number of other books that explore different aspects of the subject. HPCwire recently got the opportunity to speak with Christensen to ask him about his work and how his theories can apply to the high performance computing industry.

From Christensen’s perspective, disruptive innovation is not a technical idea, it encompasses a business model that is at the heart of how technology is delivered to the marketplace. In a nutshell, disruptive innovation represents a new value to the marketplace, and it usually emerges as a simpler and less expensive alternative to established technologies. But it is not a market-specific concept. The way Christensen has done his research is by studying how the innovation process works in a generic sense, not by studying an industry, like high performance computing, and then developing a theory that is specifically applicable to it.

According to Christensen, there’s a basic problem the way world is designed; data is only available from what happened in the past. And it’s convincingly available only about the distant past. So when managers make predictions about the future using historical data, it tends to be very unreliable.

So how is one to predict the future? The answer is theory, says the Harvard professor. “A really good theory gets down to the fundamental insight on why the world works the way it does,” explains Christensen. “You guys are scientists and engineers and use theories all of the time in the technical dimensions. But now there is a set of theories about the business side that are very valuable.”

The group Christensen works with at Harvard has spent years developing business management models that can help predict which kind of product, service or company is likely to be successful and which will likely fail. Some of his students have had some remarkable success applying this framework to real-life situations. For example, one of Christensen’s student successfully predicted the demise of Google’s Wave communication platform, an all-encompassing web-based communication tool that the search giant put on the shelf after just four months of user trial.

The HPC business, of course, lives and breathes in a world of disruptive technologies. From the “Attack of the Killer Micros” that all but wiped out custom processor-based supercomputing in the 1990s, to today’s emergence of general-purpose GPU computing, HPC seems especially prone to being reshaped by simpler technologies from below.

Which may explain why even established HPC players like IBM, Cray, and HP often struggle to make their supercomputing businesses profitable. The challenge for the industry leaders is that they need sustaining technologies to maintain their business model, says Christensen. Disruptive technologies are not good fits for market leaders, since these companies tend to cater to customers high up the food chain. In other words, the IBMs of the world need to continually create higher value products to feed their best clients. Alternatively, they can acquire other companies whose products match their existing customer base.

Christensen’s theories actually predict this type of business interaction quite well. For example, in the 1960s, X-ray technology was the only device that let doctors people peer inside the body. But in 1971, a British company called EMI launched computed tomography (CT), a high end technology which delivered superior imaging technology since it revealed soft tissues as well. Within a year the leaders of the X-ray technology — GE, Siemens and Phillips — developed better CT technology than EMI and eventually drove them out of business.

The next medical imaging technology was Magnetic Resonance Imaging (MRI), which turned out to be any even better way to look at certain structures inside the body. But again, the early developers of MRI technology were overtaken by GE, Siemens, and Phillips. For both CT and MRI devices, the established companies found they could sell them for even better profits than X-ray machines.

On the other hand, when ultrasound technology was developed, that was a different story. Ultrasound didn’t produce crystal clear images, but the devices were inexpensive and simple to operate. Therefore it could be purchased and used as standard equipment for doctors’ offices. GE, Siemens and Phillips bypassed the ultrasound market because the financial incentives were wrong for their business structure. So a whole new set of vendors emerged for ultrasound products. It was a true disruptive innovation.

If Christensen models had been applied to startups like ClearSpeed or SiCortex, they might have revealed the technologies they developed, as good as they were, did not fit the disruptive profile at all and also did not offer a sustaining technology for larger vendors. His theories might also have predicted the recent rash of HPC software tool acquisitions of Cilk Arts, Interactive Supercomputing, RapidMind, TotalView Technologies, Visual Numerics, and Acumem. All of these tool companies had sustaining technologies of value to the larger buyers, in this case, Intel, Microsoft, and Rogue Wave Software.

So what’s the next big disruptive technology? Christensen thinks it could very well be cloud computing. According to him, the cloud is setting itself up the be a countervailing force that will cut across the mainframe and high-end computing. As such, it has the potential to usurp the established business model of HPC. “The supercomputer leaders should watch out,” he warns.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel, Micro Up the Ante for Flash Memory

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This