The Business of Disruptive Innovation

By Michael Feldman

November 14, 2010

Like every technology-based sector, high performance computing takes its biggest leaps by the force of disruptive innovation, a term coined by the man who will keynote this year’s Supercomputing Conference (SC10) in New Orleans. Clayton M. Christensen doesn’t know a whole lot about supercomputing, but he knows a great deal about the forces that drive it.

For the past 15 years, Christensen, a professor at the Harvard Business School, has been studying how technological innovation works, how it can drive some businesses to succeed, and how it can cause others to fail spectacularly. Today he is considered one of the leading experts on innovation. At SC10, he will attempt to impart some of this wisdom to the HPC faithful.

Not a techno-geek by any means, Christensen’s focus is on the businesses end of disruptive innovation. In 1997 he penned his first book on the subject, The Innovator’s Dilemma, wherein he describes the challenges of managing innovation. Since then he’s developed a set of well-respected theories on innovation and has published a number of other books that explore different aspects of the subject. HPCwire recently got the opportunity to speak with Christensen to ask him about his work and how his theories can apply to the high performance computing industry.

From Christensen’s perspective, disruptive innovation is not a technical idea, it encompasses a business model that is at the heart of how technology is delivered to the marketplace. In a nutshell, disruptive innovation represents a new value to the marketplace, and it usually emerges as a simpler and less expensive alternative to established technologies. But it is not a market-specific concept. The way Christensen has done his research is by studying how the innovation process works in a generic sense, not by studying an industry, like high performance computing, and then developing a theory that is specifically applicable to it.

According to Christensen, there’s a basic problem the way world is designed; data is only available from what happened in the past. And it’s convincingly available only about the distant past. So when managers make predictions about the future using historical data, it tends to be very unreliable.

So how is one to predict the future? The answer is theory, says the Harvard professor. “A really good theory gets down to the fundamental insight on why the world works the way it does,” explains Christensen. “You guys are scientists and engineers and use theories all of the time in the technical dimensions. But now there is a set of theories about the business side that are very valuable.”

The group Christensen works with at Harvard has spent years developing business management models that can help predict which kind of product, service or company is likely to be successful and which will likely fail. Some of his students have had some remarkable success applying this framework to real-life situations. For example, one of Christensen’s student successfully predicted the demise of Google’s Wave communication platform, an all-encompassing web-based communication tool that the search giant put on the shelf after just four months of user trial.

The HPC business, of course, lives and breathes in a world of disruptive technologies. From the “Attack of the Killer Micros” that all but wiped out custom processor-based supercomputing in the 1990s, to today’s emergence of general-purpose GPU computing, HPC seems especially prone to being reshaped by simpler technologies from below.

Which may explain why even established HPC players like IBM, Cray, and HP often struggle to make their supercomputing businesses profitable. The challenge for the industry leaders is that they need sustaining technologies to maintain their business model, says Christensen. Disruptive technologies are not good fits for market leaders, since these companies tend to cater to customers high up the food chain. In other words, the IBMs of the world need to continually create higher value products to feed their best clients. Alternatively, they can acquire other companies whose products match their existing customer base.

Christensen’s theories actually predict this type of business interaction quite well. For example, in the 1960s, X-ray technology was the only device that let doctors people peer inside the body. But in 1971, a British company called EMI launched computed tomography (CT), a high end technology which delivered superior imaging technology since it revealed soft tissues as well. Within a year the leaders of the X-ray technology — GE, Siemens and Phillips — developed better CT technology than EMI and eventually drove them out of business.

The next medical imaging technology was Magnetic Resonance Imaging (MRI), which turned out to be any even better way to look at certain structures inside the body. But again, the early developers of MRI technology were overtaken by GE, Siemens, and Phillips. For both CT and MRI devices, the established companies found they could sell them for even better profits than X-ray machines.

On the other hand, when ultrasound technology was developed, that was a different story. Ultrasound didn’t produce crystal clear images, but the devices were inexpensive and simple to operate. Therefore it could be purchased and used as standard equipment for doctors’ offices. GE, Siemens and Phillips bypassed the ultrasound market because the financial incentives were wrong for their business structure. So a whole new set of vendors emerged for ultrasound products. It was a true disruptive innovation.

If Christensen models had been applied to startups like ClearSpeed or SiCortex, they might have revealed the technologies they developed, as good as they were, did not fit the disruptive profile at all and also did not offer a sustaining technology for larger vendors. His theories might also have predicted the recent rash of HPC software tool acquisitions of Cilk Arts, Interactive Supercomputing, RapidMind, TotalView Technologies, Visual Numerics, and Acumem. All of these tool companies had sustaining technologies of value to the larger buyers, in this case, Intel, Microsoft, and Rogue Wave Software.

So what’s the next big disruptive technology? Christensen thinks it could very well be cloud computing. According to him, the cloud is setting itself up the be a countervailing force that will cut across the mainframe and high-end computing. As such, it has the potential to usurp the established business model of HPC. “The supercomputer leaders should watch out,” he warns.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire