The Business of Disruptive Innovation

By Michael Feldman

November 14, 2010

Like every technology-based sector, high performance computing takes its biggest leaps by the force of disruptive innovation, a term coined by the man who will keynote this year’s Supercomputing Conference (SC10) in New Orleans. Clayton M. Christensen doesn’t know a whole lot about supercomputing, but he knows a great deal about the forces that drive it.

For the past 15 years, Christensen, a professor at the Harvard Business School, has been studying how technological innovation works, how it can drive some businesses to succeed, and how it can cause others to fail spectacularly. Today he is considered one of the leading experts on innovation. At SC10, he will attempt to impart some of this wisdom to the HPC faithful.

Not a techno-geek by any means, Christensen’s focus is on the businesses end of disruptive innovation. In 1997 he penned his first book on the subject, The Innovator’s Dilemma, wherein he describes the challenges of managing innovation. Since then he’s developed a set of well-respected theories on innovation and has published a number of other books that explore different aspects of the subject. HPCwire recently got the opportunity to speak with Christensen to ask him about his work and how his theories can apply to the high performance computing industry.

From Christensen’s perspective, disruptive innovation is not a technical idea, it encompasses a business model that is at the heart of how technology is delivered to the marketplace. In a nutshell, disruptive innovation represents a new value to the marketplace, and it usually emerges as a simpler and less expensive alternative to established technologies. But it is not a market-specific concept. The way Christensen has done his research is by studying how the innovation process works in a generic sense, not by studying an industry, like high performance computing, and then developing a theory that is specifically applicable to it.

According to Christensen, there’s a basic problem the way world is designed; data is only available from what happened in the past. And it’s convincingly available only about the distant past. So when managers make predictions about the future using historical data, it tends to be very unreliable.

So how is one to predict the future? The answer is theory, says the Harvard professor. “A really good theory gets down to the fundamental insight on why the world works the way it does,” explains Christensen. “You guys are scientists and engineers and use theories all of the time in the technical dimensions. But now there is a set of theories about the business side that are very valuable.”

The group Christensen works with at Harvard has spent years developing business management models that can help predict which kind of product, service or company is likely to be successful and which will likely fail. Some of his students have had some remarkable success applying this framework to real-life situations. For example, one of Christensen’s student successfully predicted the demise of Google’s Wave communication platform, an all-encompassing web-based communication tool that the search giant put on the shelf after just four months of user trial.

The HPC business, of course, lives and breathes in a world of disruptive technologies. From the “Attack of the Killer Micros” that all but wiped out custom processor-based supercomputing in the 1990s, to today’s emergence of general-purpose GPU computing, HPC seems especially prone to being reshaped by simpler technologies from below.

Which may explain why even established HPC players like IBM, Cray, and HP often struggle to make their supercomputing businesses profitable. The challenge for the industry leaders is that they need sustaining technologies to maintain their business model, says Christensen. Disruptive technologies are not good fits for market leaders, since these companies tend to cater to customers high up the food chain. In other words, the IBMs of the world need to continually create higher value products to feed their best clients. Alternatively, they can acquire other companies whose products match their existing customer base.

Christensen’s theories actually predict this type of business interaction quite well. For example, in the 1960s, X-ray technology was the only device that let doctors people peer inside the body. But in 1971, a British company called EMI launched computed tomography (CT), a high end technology which delivered superior imaging technology since it revealed soft tissues as well. Within a year the leaders of the X-ray technology — GE, Siemens and Phillips — developed better CT technology than EMI and eventually drove them out of business.

The next medical imaging technology was Magnetic Resonance Imaging (MRI), which turned out to be any even better way to look at certain structures inside the body. But again, the early developers of MRI technology were overtaken by GE, Siemens, and Phillips. For both CT and MRI devices, the established companies found they could sell them for even better profits than X-ray machines.

On the other hand, when ultrasound technology was developed, that was a different story. Ultrasound didn’t produce crystal clear images, but the devices were inexpensive and simple to operate. Therefore it could be purchased and used as standard equipment for doctors’ offices. GE, Siemens and Phillips bypassed the ultrasound market because the financial incentives were wrong for their business structure. So a whole new set of vendors emerged for ultrasound products. It was a true disruptive innovation.

If Christensen models had been applied to startups like ClearSpeed or SiCortex, they might have revealed the technologies they developed, as good as they were, did not fit the disruptive profile at all and also did not offer a sustaining technology for larger vendors. His theories might also have predicted the recent rash of HPC software tool acquisitions of Cilk Arts, Interactive Supercomputing, RapidMind, TotalView Technologies, Visual Numerics, and Acumem. All of these tool companies had sustaining technologies of value to the larger buyers, in this case, Intel, Microsoft, and Rogue Wave Software.

So what’s the next big disruptive technology? Christensen thinks it could very well be cloud computing. According to him, the cloud is setting itself up the be a countervailing force that will cut across the mainframe and high-end computing. As such, it has the potential to usurp the established business model of HPC. “The supercomputer leaders should watch out,” he warns.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This