The Business of Disruptive Innovation

By Michael Feldman

November 14, 2010

Like every technology-based sector, high performance computing takes its biggest leaps by the force of disruptive innovation, a term coined by the man who will keynote this year’s Supercomputing Conference (SC10) in New Orleans. Clayton M. Christensen doesn’t know a whole lot about supercomputing, but he knows a great deal about the forces that drive it.

For the past 15 years, Christensen, a professor at the Harvard Business School, has been studying how technological innovation works, how it can drive some businesses to succeed, and how it can cause others to fail spectacularly. Today he is considered one of the leading experts on innovation. At SC10, he will attempt to impart some of this wisdom to the HPC faithful.

Not a techno-geek by any means, Christensen’s focus is on the businesses end of disruptive innovation. In 1997 he penned his first book on the subject, The Innovator’s Dilemma, wherein he describes the challenges of managing innovation. Since then he’s developed a set of well-respected theories on innovation and has published a number of other books that explore different aspects of the subject. HPCwire recently got the opportunity to speak with Christensen to ask him about his work and how his theories can apply to the high performance computing industry.

From Christensen’s perspective, disruptive innovation is not a technical idea, it encompasses a business model that is at the heart of how technology is delivered to the marketplace. In a nutshell, disruptive innovation represents a new value to the marketplace, and it usually emerges as a simpler and less expensive alternative to established technologies. But it is not a market-specific concept. The way Christensen has done his research is by studying how the innovation process works in a generic sense, not by studying an industry, like high performance computing, and then developing a theory that is specifically applicable to it.

According to Christensen, there’s a basic problem the way world is designed; data is only available from what happened in the past. And it’s convincingly available only about the distant past. So when managers make predictions about the future using historical data, it tends to be very unreliable.

So how is one to predict the future? The answer is theory, says the Harvard professor. “A really good theory gets down to the fundamental insight on why the world works the way it does,” explains Christensen. “You guys are scientists and engineers and use theories all of the time in the technical dimensions. But now there is a set of theories about the business side that are very valuable.”

The group Christensen works with at Harvard has spent years developing business management models that can help predict which kind of product, service or company is likely to be successful and which will likely fail. Some of his students have had some remarkable success applying this framework to real-life situations. For example, one of Christensen’s student successfully predicted the demise of Google’s Wave communication platform, an all-encompassing web-based communication tool that the search giant put on the shelf after just four months of user trial.

The HPC business, of course, lives and breathes in a world of disruptive technologies. From the “Attack of the Killer Micros” that all but wiped out custom processor-based supercomputing in the 1990s, to today’s emergence of general-purpose GPU computing, HPC seems especially prone to being reshaped by simpler technologies from below.

Which may explain why even established HPC players like IBM, Cray, and HP often struggle to make their supercomputing businesses profitable. The challenge for the industry leaders is that they need sustaining technologies to maintain their business model, says Christensen. Disruptive technologies are not good fits for market leaders, since these companies tend to cater to customers high up the food chain. In other words, the IBMs of the world need to continually create higher value products to feed their best clients. Alternatively, they can acquire other companies whose products match their existing customer base.

Christensen’s theories actually predict this type of business interaction quite well. For example, in the 1960s, X-ray technology was the only device that let doctors people peer inside the body. But in 1971, a British company called EMI launched computed tomography (CT), a high end technology which delivered superior imaging technology since it revealed soft tissues as well. Within a year the leaders of the X-ray technology — GE, Siemens and Phillips — developed better CT technology than EMI and eventually drove them out of business.

The next medical imaging technology was Magnetic Resonance Imaging (MRI), which turned out to be any even better way to look at certain structures inside the body. But again, the early developers of MRI technology were overtaken by GE, Siemens, and Phillips. For both CT and MRI devices, the established companies found they could sell them for even better profits than X-ray machines.

On the other hand, when ultrasound technology was developed, that was a different story. Ultrasound didn’t produce crystal clear images, but the devices were inexpensive and simple to operate. Therefore it could be purchased and used as standard equipment for doctors’ offices. GE, Siemens and Phillips bypassed the ultrasound market because the financial incentives were wrong for their business structure. So a whole new set of vendors emerged for ultrasound products. It was a true disruptive innovation.

If Christensen models had been applied to startups like ClearSpeed or SiCortex, they might have revealed the technologies they developed, as good as they were, did not fit the disruptive profile at all and also did not offer a sustaining technology for larger vendors. His theories might also have predicted the recent rash of HPC software tool acquisitions of Cilk Arts, Interactive Supercomputing, RapidMind, TotalView Technologies, Visual Numerics, and Acumem. All of these tool companies had sustaining technologies of value to the larger buyers, in this case, Intel, Microsoft, and Rogue Wave Software.

So what’s the next big disruptive technology? Christensen thinks it could very well be cloud computing. According to him, the cloud is setting itself up the be a countervailing force that will cut across the mainframe and high-end computing. As such, it has the potential to usurp the established business model of HPC. “The supercomputer leaders should watch out,” he warns.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This