The Business of Disruptive Innovation

By Michael Feldman

November 14, 2010

Like every technology-based sector, high performance computing takes its biggest leaps by the force of disruptive innovation, a term coined by the man who will keynote this year’s Supercomputing Conference (SC10) in New Orleans. Clayton M. Christensen doesn’t know a whole lot about supercomputing, but he knows a great deal about the forces that drive it.

For the past 15 years, Christensen, a professor at the Harvard Business School, has been studying how technological innovation works, how it can drive some businesses to succeed, and how it can cause others to fail spectacularly. Today he is considered one of the leading experts on innovation. At SC10, he will attempt to impart some of this wisdom to the HPC faithful.

Not a techno-geek by any means, Christensen’s focus is on the businesses end of disruptive innovation. In 1997 he penned his first book on the subject, The Innovator’s Dilemma, wherein he describes the challenges of managing innovation. Since then he’s developed a set of well-respected theories on innovation and has published a number of other books that explore different aspects of the subject. HPCwire recently got the opportunity to speak with Christensen to ask him about his work and how his theories can apply to the high performance computing industry.

From Christensen’s perspective, disruptive innovation is not a technical idea, it encompasses a business model that is at the heart of how technology is delivered to the marketplace. In a nutshell, disruptive innovation represents a new value to the marketplace, and it usually emerges as a simpler and less expensive alternative to established technologies. But it is not a market-specific concept. The way Christensen has done his research is by studying how the innovation process works in a generic sense, not by studying an industry, like high performance computing, and then developing a theory that is specifically applicable to it.

According to Christensen, there’s a basic problem the way world is designed; data is only available from what happened in the past. And it’s convincingly available only about the distant past. So when managers make predictions about the future using historical data, it tends to be very unreliable.

So how is one to predict the future? The answer is theory, says the Harvard professor. “A really good theory gets down to the fundamental insight on why the world works the way it does,” explains Christensen. “You guys are scientists and engineers and use theories all of the time in the technical dimensions. But now there is a set of theories about the business side that are very valuable.”

The group Christensen works with at Harvard has spent years developing business management models that can help predict which kind of product, service or company is likely to be successful and which will likely fail. Some of his students have had some remarkable success applying this framework to real-life situations. For example, one of Christensen’s student successfully predicted the demise of Google’s Wave communication platform, an all-encompassing web-based communication tool that the search giant put on the shelf after just four months of user trial.

The HPC business, of course, lives and breathes in a world of disruptive technologies. From the “Attack of the Killer Micros” that all but wiped out custom processor-based supercomputing in the 1990s, to today’s emergence of general-purpose GPU computing, HPC seems especially prone to being reshaped by simpler technologies from below.

Which may explain why even established HPC players like IBM, Cray, and HP often struggle to make their supercomputing businesses profitable. The challenge for the industry leaders is that they need sustaining technologies to maintain their business model, says Christensen. Disruptive technologies are not good fits for market leaders, since these companies tend to cater to customers high up the food chain. In other words, the IBMs of the world need to continually create higher value products to feed their best clients. Alternatively, they can acquire other companies whose products match their existing customer base.

Christensen’s theories actually predict this type of business interaction quite well. For example, in the 1960s, X-ray technology was the only device that let doctors people peer inside the body. But in 1971, a British company called EMI launched computed tomography (CT), a high end technology which delivered superior imaging technology since it revealed soft tissues as well. Within a year the leaders of the X-ray technology — GE, Siemens and Phillips — developed better CT technology than EMI and eventually drove them out of business.

The next medical imaging technology was Magnetic Resonance Imaging (MRI), which turned out to be any even better way to look at certain structures inside the body. But again, the early developers of MRI technology were overtaken by GE, Siemens, and Phillips. For both CT and MRI devices, the established companies found they could sell them for even better profits than X-ray machines.

On the other hand, when ultrasound technology was developed, that was a different story. Ultrasound didn’t produce crystal clear images, but the devices were inexpensive and simple to operate. Therefore it could be purchased and used as standard equipment for doctors’ offices. GE, Siemens and Phillips bypassed the ultrasound market because the financial incentives were wrong for their business structure. So a whole new set of vendors emerged for ultrasound products. It was a true disruptive innovation.

If Christensen models had been applied to startups like ClearSpeed or SiCortex, they might have revealed the technologies they developed, as good as they were, did not fit the disruptive profile at all and also did not offer a sustaining technology for larger vendors. His theories might also have predicted the recent rash of HPC software tool acquisitions of Cilk Arts, Interactive Supercomputing, RapidMind, TotalView Technologies, Visual Numerics, and Acumem. All of these tool companies had sustaining technologies of value to the larger buyers, in this case, Intel, Microsoft, and Rogue Wave Software.

So what’s the next big disruptive technology? Christensen thinks it could very well be cloud computing. According to him, the cloud is setting itself up the be a countervailing force that will cut across the mainframe and high-end computing. As such, it has the potential to usurp the established business model of HPC. “The supercomputer leaders should watch out,” he warns.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This