GPU Supercomputing Arrives on Amazon’s Cloud

By Nicole Hemsoth

November 15, 2010

This week marks a meaningful stage in the ongoing GPU coming-out party in the realm of high-performance computing–both in the cloud and beyond.

While there have been steady conversations about the power of GPU computing for certain HPC applications for some time already, the word “GPU” on the lips of thousands more this week following the official announcement of China’s number one-ranked GPU-powered supercomputer the Tianhe-1a, which runs on 14,336 Xeon X5670 processors and 7,168 NVIDIA Tesla M2050 GPGPUs.

Another major announcement, this time from cloud infrastructure giant Amazon Web Services, brings the mighty GPU to the forefront of conversations again with its unveiling of Cluster GPU Instances, a spin-off of the still fresh Cluster Compute Instances.

Those whose work resides in visualization, rendering, oil and gas, financial and climate modeling and a wide range of other fields are being granted yet another alternative to investing in their own GPU clusters with this addition to Amazon’s short list of HPC-oriented offering. While there are other providers with GPU clusters for rent, including Penguin Computing, Peer1 Hosting and a handful of others who do have some of the support framework (and oftentimes performance benchmarking comparisons) in place, the concept of GPU supercomputing on an affordable public cloud resource is big news in the HPC “cloudosphere” indeed.

Under the Cluster GPU Hood

Outside of the addition of a pair of NVIDIA Tesla M2050 Fermi GPUs, the Cluster GPU instances don’t look too much different than Cluster Compute Instances, which were announced late this summer. This instance type hosts a pair of quad-core Intel Nehalem X5570 processors and 10 Gbps Ethernet as well as 22 GB of RAM and 16900 GB for storehousing and is designed for (and has been quite extensively tested with) a number of high-performance computing workloads.

As the GPU Cluster Instance team stated today on its blog, “Each of the Tesla M2050s contains 448 cores and 3GB of ECC RAM, designed to deliver up to 515 gigaflops of double-precision performance when pushed to the limit. Since each instance contains a pair of these processors, you can get slightly more than a trillion FLOPS per Cluster GPU instance.”

When you tie all of this together with 10Gbps Ethernet, there is an  opportunity for highly data parallel HPC and rendering capabilities that are definitely worth paying attention to since they’re arriving at $2.10 per hour standard. Just as with the Cluster Compute Instances, customers are given a base outlay of resources but have to manually request more from the AWS team.

This new instance type comes with some added complexity, at least compared to its predecessor on the HPC end, the Cluster Compute Instances where porting code was not such a tricky issue. This instance type is aimed at those who understand (or have a reliable group to help with) taking advantage of those Fermis.

The biggest hurdle for wider GPU computing adoption, whether in the cloud or not, lies simply in application porting. Since specialized code is required, namely understanding the CUDA architecture, getting started with these instance types early on will be an exercise only for those likely familiar with EC2 and also familiar with the complex coding involved with GPU computing. However, as interest in GPU computing mounts in the coming years, it is likely that some of these code-related challenges will be worked out to ensure wider access.

According to NVIDIA, “Hundreds of applications have already been ported to the NVIDIA CUDA massively parallel architecture upon which all its current GPUs are based…Some of the applications ready to be used on Amazon Cluster GPU Instances include mental images’ RealityServer and Mathworks’ MATLAB.

NVIDIA has granted a significant amount of time to reaching out to potential customers who could make use of GPGPUs, thus such a partnership with Amazon serves them very well as it opens access to their architecture via greater affordability. It’s not hard to see how this is a win-win for both AWS and NVIDIA respectively.

While the number of applications ported will grow in coming years, especially as GPU computing is being stretched out to meet a number of new users who were barred from entry financially, it’s difficult to tell how  much of a boost this will give Amazon. Their CCI offering has been overall well-received, despite some of its limitations for security and latency-aware applications, and one can guess this too will take hold among a small minority and grow in numbers as the porting issue becomes less problematic.

The Bigger GPU Cloud Picture

Not long ago, developers of advanced scientific applications found a way to use GPUs to handle a number of general purpose problems, hence leading to the growing General Purpose on Graphics Processing Units (GPGPU) movement. This is a quickly evolving space as more developers seek to extend applications beyond CPU processing power, and clearly someone at Amazon saw a value-add in granting customers access to GPUs in the cloud. This week during SC10 we hope to talk to some potential users about how they would (or wouldn’t) use such a resource and what they would perceive as the biggest barriers or benefits.

There have been several hoping to get Amazon’s attention to request GPU computing capabilities over the last couple of years, but until the official announcement, this still seemed on the horizon. Some projected that Amazon would wait to make an investment in GPU until it had sufficiently monitored and approved of Cluster Compute Instance success and furthermore, until they saw innovations in ease of use of GPUs from a code standpoint.

In addition to assuring us during an interview that Cluster Compute Instance had, indeed, been very well-received, Peter De Santis, General Manager of Amazon’s EC2 noted in the company’s release that with this new offering, “we are increasing the options available to our HPC customers by allowing them to choose between using high-performance clusters with high-performance CPUs or taking advantage of the unique processing abilities of GPU processors for applications that can benefit from the massive parallel processing power they provide.”

Mental Images, a subsidiary of NVIDIA that provides rendering and 3D web services component software targeted at CAE, visualization and entertainment is a perfect candidate to benefit from an instance type such as the new Cluster GPU provisioning. As Rolf Herken, CEO and CTO of mental images noted, “The availability of NVIDIA Tesla GPUs in the AWS cloud in the form of Amazon Cluster GPU Instances running the RealityServer platform with the iray renderer will provide architects, product designers, engineers, scientists and others with extraordinarily powerful tools that they can remotely access on mobile devices, PCs and other devices.” According to internal tests he has run with his team, it has been shown that they can reach “more than 90 percent scaling efficiency on clusters of up to 128 GPUs each.”

Amazon’s offering of GPU power to support a host of high-performance computing applications, particularly in the oil and gas, financial services and rendering arenas comes as a bit of surprise as many anticipated they wouldn’t see such an offering until there was a more swelling appeal to AWS on the part of seasoned GPU computing users who were also familiar with EC2. While it was a more of a surprise that it happened so soon, what better time to push out an announcement than during the biggest week for HPC professionals around the world…

Earlier this month we announced the winners of our 2010 Editors’ Choice Awards, of which Amazon had the distinction of being the Cloud Platform Innovator. This choice was due, in part, to their announcement of the HPC-geared Cluster Compute Instance type (CCI). Our argument in favor of Amazon’s position as an ever-evolving innovator in cloud computing now gains further credence as new doors have opened for those who could make great use of GPU computing but were barred from entry due to high up-front investment.

Cluster Compute Instances are being used, according to Tera Randall from Amazon, for a number of projects, including a few related to machine learning for infectious disease research, next-gen sequencing of genetic data, energy trading and financial modeling and other design and engineering-related tasks. Randall noted that there were “a large number of users running a variety of CFD applications.

With this adoption of Cluster Compute Instances for applications that might be a good fit for the processing power addition of GPU computing, one has to wonder if these existing customers will be up for the task of retooling their code to capture the GPU benefit or if they’ll settle for standard CCIs, which is $1.60 per instance hour versus $2.10 per instance hour for Cluster GPU.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This