GPU Supercomputing Arrives on Amazon’s Cloud

By Nicole Hemsoth

November 15, 2010

This week marks a meaningful stage in the ongoing GPU coming-out party in the realm of high-performance computing–both in the cloud and beyond.

While there have been steady conversations about the power of GPU computing for certain HPC applications for some time already, the word “GPU” on the lips of thousands more this week following the official announcement of China’s number one-ranked GPU-powered supercomputer the Tianhe-1a, which runs on 14,336 Xeon X5670 processors and 7,168 NVIDIA Tesla M2050 GPGPUs.

Another major announcement, this time from cloud infrastructure giant Amazon Web Services, brings the mighty GPU to the forefront of conversations again with its unveiling of Cluster GPU Instances, a spin-off of the still fresh Cluster Compute Instances.

Those whose work resides in visualization, rendering, oil and gas, financial and climate modeling and a wide range of other fields are being granted yet another alternative to investing in their own GPU clusters with this addition to Amazon’s short list of HPC-oriented offering. While there are other providers with GPU clusters for rent, including Penguin Computing, Peer1 Hosting and a handful of others who do have some of the support framework (and oftentimes performance benchmarking comparisons) in place, the concept of GPU supercomputing on an affordable public cloud resource is big news in the HPC “cloudosphere” indeed.

Under the Cluster GPU Hood

Outside of the addition of a pair of NVIDIA Tesla M2050 Fermi GPUs, the Cluster GPU instances don’t look too much different than Cluster Compute Instances, which were announced late this summer. This instance type hosts a pair of quad-core Intel Nehalem X5570 processors and 10 Gbps Ethernet as well as 22 GB of RAM and 16900 GB for storehousing and is designed for (and has been quite extensively tested with) a number of high-performance computing workloads.

As the GPU Cluster Instance team stated today on its blog, “Each of the Tesla M2050s contains 448 cores and 3GB of ECC RAM, designed to deliver up to 515 gigaflops of double-precision performance when pushed to the limit. Since each instance contains a pair of these processors, you can get slightly more than a trillion FLOPS per Cluster GPU instance.”

When you tie all of this together with 10Gbps Ethernet, there is an  opportunity for highly data parallel HPC and rendering capabilities that are definitely worth paying attention to since they’re arriving at $2.10 per hour standard. Just as with the Cluster Compute Instances, customers are given a base outlay of resources but have to manually request more from the AWS team.

This new instance type comes with some added complexity, at least compared to its predecessor on the HPC end, the Cluster Compute Instances where porting code was not such a tricky issue. This instance type is aimed at those who understand (or have a reliable group to help with) taking advantage of those Fermis.

The biggest hurdle for wider GPU computing adoption, whether in the cloud or not, lies simply in application porting. Since specialized code is required, namely understanding the CUDA architecture, getting started with these instance types early on will be an exercise only for those likely familiar with EC2 and also familiar with the complex coding involved with GPU computing. However, as interest in GPU computing mounts in the coming years, it is likely that some of these code-related challenges will be worked out to ensure wider access.

According to NVIDIA, “Hundreds of applications have already been ported to the NVIDIA CUDA massively parallel architecture upon which all its current GPUs are based…Some of the applications ready to be used on Amazon Cluster GPU Instances include mental images’ RealityServer and Mathworks’ MATLAB.

NVIDIA has granted a significant amount of time to reaching out to potential customers who could make use of GPGPUs, thus such a partnership with Amazon serves them very well as it opens access to their architecture via greater affordability. It’s not hard to see how this is a win-win for both AWS and NVIDIA respectively.

While the number of applications ported will grow in coming years, especially as GPU computing is being stretched out to meet a number of new users who were barred from entry financially, it’s difficult to tell how  much of a boost this will give Amazon. Their CCI offering has been overall well-received, despite some of its limitations for security and latency-aware applications, and one can guess this too will take hold among a small minority and grow in numbers as the porting issue becomes less problematic.

The Bigger GPU Cloud Picture

Not long ago, developers of advanced scientific applications found a way to use GPUs to handle a number of general purpose problems, hence leading to the growing General Purpose on Graphics Processing Units (GPGPU) movement. This is a quickly evolving space as more developers seek to extend applications beyond CPU processing power, and clearly someone at Amazon saw a value-add in granting customers access to GPUs in the cloud. This week during SC10 we hope to talk to some potential users about how they would (or wouldn’t) use such a resource and what they would perceive as the biggest barriers or benefits.

There have been several hoping to get Amazon’s attention to request GPU computing capabilities over the last couple of years, but until the official announcement, this still seemed on the horizon. Some projected that Amazon would wait to make an investment in GPU until it had sufficiently monitored and approved of Cluster Compute Instance success and furthermore, until they saw innovations in ease of use of GPUs from a code standpoint.

In addition to assuring us during an interview that Cluster Compute Instance had, indeed, been very well-received, Peter De Santis, General Manager of Amazon’s EC2 noted in the company’s release that with this new offering, “we are increasing the options available to our HPC customers by allowing them to choose between using high-performance clusters with high-performance CPUs or taking advantage of the unique processing abilities of GPU processors for applications that can benefit from the massive parallel processing power they provide.”

Mental Images, a subsidiary of NVIDIA that provides rendering and 3D web services component software targeted at CAE, visualization and entertainment is a perfect candidate to benefit from an instance type such as the new Cluster GPU provisioning. As Rolf Herken, CEO and CTO of mental images noted, “The availability of NVIDIA Tesla GPUs in the AWS cloud in the form of Amazon Cluster GPU Instances running the RealityServer platform with the iray renderer will provide architects, product designers, engineers, scientists and others with extraordinarily powerful tools that they can remotely access on mobile devices, PCs and other devices.” According to internal tests he has run with his team, it has been shown that they can reach “more than 90 percent scaling efficiency on clusters of up to 128 GPUs each.”

Amazon’s offering of GPU power to support a host of high-performance computing applications, particularly in the oil and gas, financial services and rendering arenas comes as a bit of surprise as many anticipated they wouldn’t see such an offering until there was a more swelling appeal to AWS on the part of seasoned GPU computing users who were also familiar with EC2. While it was a more of a surprise that it happened so soon, what better time to push out an announcement than during the biggest week for HPC professionals around the world…

Earlier this month we announced the winners of our 2010 Editors’ Choice Awards, of which Amazon had the distinction of being the Cloud Platform Innovator. This choice was due, in part, to their announcement of the HPC-geared Cluster Compute Instance type (CCI). Our argument in favor of Amazon’s position as an ever-evolving innovator in cloud computing now gains further credence as new doors have opened for those who could make great use of GPU computing but were barred from entry due to high up-front investment.

Cluster Compute Instances are being used, according to Tera Randall from Amazon, for a number of projects, including a few related to machine learning for infectious disease research, next-gen sequencing of genetic data, energy trading and financial modeling and other design and engineering-related tasks. Randall noted that there were “a large number of users running a variety of CFD applications.

With this adoption of Cluster Compute Instances for applications that might be a good fit for the processing power addition of GPU computing, one has to wonder if these existing customers will be up for the task of retooling their code to capture the GPU benefit or if they’ll settle for standard CCIs, which is $1.60 per instance hour versus $2.10 per instance hour for Cluster GPU.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This