SGI Gets Its Mojo Working for Supercomputing Conference

By Michael Feldman

November 15, 2010

SGI has made good on its promise to create a petaflop-in-a-cabinet supercomputer that can scale up to tens and even hundreds of cabinets. Developed under the code name “Project Mojo,” the company has dubbed the new product Prism XL. SGI will be showcasing the system this week in their exhibit booth at the Supercomputing Conference in New Orleans.

Not surprisingly, the Prism system relies on accelerator technology to deliver so much computational brawn. Specifically, SGI is supporting configurations with NVIDIA Tesla GPUs, AMD/ATI GPUs, and Tilera processors. The central idea was to create an open and scalable platform that exploited all the advantages of accelerator technology, namely lower cost, better energy efficiency, and a smaller footprint. According to Bill Mannel, SGI’s VP of product marketing, what they’ve achieved with Prism is a system that costs about 25 percent less than a comparable x86-based supercomputer, and in just one-tenth the floor space.

Computational density was a central goal of Project Mojo. “Around this time last year, a set of SGI executives, including myself, sat in a room in Austin Texas and asked ‘How can we put a petaflop in a single cabinet?'” explains Mannel. “And that was how the Project Mojo product got started.”

The design went through a number of iterations. The original focus was on ATI GPUs since, at least at the time, they offered the most performant processors. (Arguably they still do; the top-end ATI Radeon 5970 chip delivers 4.64 single precision teraflops or 928 double precision gigaflops.) Mannel says that customer feedback drove them to a more general-purpose design that could accommodate virtually any accelerator that was PCIe-friendly.

The first Prism systems available in December can be ordered with NVIDIA Tesla M2050 or M2070 modules, AMD FireStream 9370 (“Osprey”) cards, or 64-core Tilera processor. In January, SGI intends to add support for the AMD FireStream 9350 (“Kestrel”). Mannel says SGI is also considering offering the aforementioned Radeon HD 5970 as an option at some point. Presumably Prism could also be equipped with Intel’s upcoming Many Integrated Core (MIC) “Knights Corner” accelerator further down the road. SGI wouldn’t commit to a future MIC offering, other than to say that they are “giving it serious consideration.”

The Prism design centers around maximizing the number of PCIe interfaces, and thus the number of accelerator cards, that can be packed into a standard rack. Each of the slots are PCIe Gen 2 x16 interfaces, so every accelerator can enjoy full I/O bandwidth to the motherboard. The slot can draw up to 300 watts, which is designed to accommodate all current accelerator cards — the current crop of GPGPUs top out at about 250 watts — as well as all future ones on the major vendors’ roadmaps.

The basic component of a Prism system is a “stick,” a modular enclosure that is indeed stick-like — 5.78 inch wide, 3.34 inch high, and 37 inches deep. Each one is powered by a 1050 watt power supply, and despite the density, the whole apparatus is air-cooled. A 42U rack can be outfitted with up to 63 sticks, in a 3-by-21 honeycomb pattern. The sticks are very much plug and play; you can actually take one out of a rack and plug it into a wall socket in a lab or office should you need to do some local development work.

Inside each stick are two of what SGI calls “slices”, which are essentially nodes. Each slice is comprised of a CPU, one double-wide or two single wide accelerators, and up to two SATA disks. The CPU chosen for this task is an AMD Opteron 4100 “Lisbon” processor, which is housed on a “node board.” SGI opted for the no-frills, lower-power Lisbon processor (basically half a Magny-Cours Opteron) since its principle function is to drive the accelerator, rather than delivering a lot of compute on its own. Up to four DDR3 memory slots, operating at 1333 MHz, are available on the node board.

The default network is GigE, but a separate low profile PCIe slot is available on each slice for an InfiniBand adapter– either single plane or dual plane. This PCIe interface could theoretically be used to stuff another accelerator onto the node (and customers have asked for such an option), but SGI doesn’t currently support that configuration. The company also doesn’t support a 10 GbE option yet, although there’s nothing preventing the customer from plugging in their own adapters. One might wonder why SGI just didn’t slap an InfiniBand or 10 GbE chip down on the node board, but it looks like the rationale was to minimize the common infrastructure as much as possible, and let the customers upscale the configuration as needed via all the PCIe slots.

Since each stick has two slices, a maximally configured one can house 2 CPUs and 4 GPUs. This is how SGI is able to get their peak petaflop in a single cabinet. A cabinet in this case is what SGI calls their M-Rack, an extra-wide double rack with a switch rack in the middle. Since it’s basically two 42U compute racks, you can house 500 single-wide GPUs in it. If those are 2 teraflop AMD FireStream 9350s, you’ve got your petaflop, but just single precision.

Of course, many HPC customers are going to opt for NVIDIA’s Fermi GPUs, since they have up-market features like ECC memory, which is crucial for a lot of heavy-duty computing. In this case though, a cabinet would only yield about 250 single precision teraflops. Of course since the Prism is designed for future accelerators, it won’t be too many years before we’ll be getting a full double precision petaflop in a cabinet.

SGI is targeting Prism at market segments that contain the most enthusiastic early adopters of HPC accelerators, namely oil and gas, media/rendering, education, research, defense/intelligence, and bio/pharma. A number of companies in these areas have already deployed accelerator-based machines — mostly GPU-equipped servers — and these customers would be the ones most likely interested in scaling up to a Prism XL.

The Tilera acceleration option is somewhat of a different animal. In this case, the user is not concerned with FLOPS, since these manycore processors are rather weak in the floating point department.  The intention here is to deliver lots of integer operations in a very power-efficient package. The 64-core Tilera chip delivers 443 billion operations per second, yet consume only about 20 watts. According to Mannel, Tilera deployments are intended to be used in places where FPGA acceleration has been used in the past, for example, in encryption, image and signal processing; network packet inspection, web/content delivery, and media format conversion.

Unlike FPGAs, Tilera processors can be programmed with conventional tools and language frameworks, making application development and maintenance much less complicated. That wouldn’t necessarily rule out a future FPGA accelerator for Prism though. Mannel, in fact, says a few customers are interested in such an option.

With all different accelerator options, SGI is relying mainly on third-party vendors for software support. This includes compilers, drivers, and libraries from NVIDIA, AMD and Tilera for their respective hardware. SGI is also packaging development tools from Allinea, CAPS Enterprise, Portland Group, and Rogue Wave. For job scheduling, they offer Altair PBS Professional, which is conveniently accelerator-aware, while SGI’s own Management Center is used for system management. OS support for the initial offering is Red Hat RHEL 5.5 and CentOS 5.5.

As of this writing, Prism XL pricing was not available, but one would expect to pay some premium compared to vanilla CPU-GPU server-based systems on the market today.  The first Prisms will be available for shipping in December.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This