SGI Gets Its Mojo Working for Supercomputing Conference

By Michael Feldman

November 15, 2010

SGI has made good on its promise to create a petaflop-in-a-cabinet supercomputer that can scale up to tens and even hundreds of cabinets. Developed under the code name “Project Mojo,” the company has dubbed the new product Prism XL. SGI will be showcasing the system this week in their exhibit booth at the Supercomputing Conference in New Orleans.

Not surprisingly, the Prism system relies on accelerator technology to deliver so much computational brawn. Specifically, SGI is supporting configurations with NVIDIA Tesla GPUs, AMD/ATI GPUs, and Tilera processors. The central idea was to create an open and scalable platform that exploited all the advantages of accelerator technology, namely lower cost, better energy efficiency, and a smaller footprint. According to Bill Mannel, SGI’s VP of product marketing, what they’ve achieved with Prism is a system that costs about 25 percent less than a comparable x86-based supercomputer, and in just one-tenth the floor space.

Computational density was a central goal of Project Mojo. “Around this time last year, a set of SGI executives, including myself, sat in a room in Austin Texas and asked ‘How can we put a petaflop in a single cabinet?'” explains Mannel. “And that was how the Project Mojo product got started.”

The design went through a number of iterations. The original focus was on ATI GPUs since, at least at the time, they offered the most performant processors. (Arguably they still do; the top-end ATI Radeon 5970 chip delivers 4.64 single precision teraflops or 928 double precision gigaflops.) Mannel says that customer feedback drove them to a more general-purpose design that could accommodate virtually any accelerator that was PCIe-friendly.

The first Prism systems available in December can be ordered with NVIDIA Tesla M2050 or M2070 modules, AMD FireStream 9370 (“Osprey”) cards, or 64-core Tilera processor. In January, SGI intends to add support for the AMD FireStream 9350 (“Kestrel”). Mannel says SGI is also considering offering the aforementioned Radeon HD 5970 as an option at some point. Presumably Prism could also be equipped with Intel’s upcoming Many Integrated Core (MIC) “Knights Corner” accelerator further down the road. SGI wouldn’t commit to a future MIC offering, other than to say that they are “giving it serious consideration.”

The Prism design centers around maximizing the number of PCIe interfaces, and thus the number of accelerator cards, that can be packed into a standard rack. Each of the slots are PCIe Gen 2 x16 interfaces, so every accelerator can enjoy full I/O bandwidth to the motherboard. The slot can draw up to 300 watts, which is designed to accommodate all current accelerator cards — the current crop of GPGPUs top out at about 250 watts — as well as all future ones on the major vendors’ roadmaps.

The basic component of a Prism system is a “stick,” a modular enclosure that is indeed stick-like — 5.78 inch wide, 3.34 inch high, and 37 inches deep. Each one is powered by a 1050 watt power supply, and despite the density, the whole apparatus is air-cooled. A 42U rack can be outfitted with up to 63 sticks, in a 3-by-21 honeycomb pattern. The sticks are very much plug and play; you can actually take one out of a rack and plug it into a wall socket in a lab or office should you need to do some local development work.

Inside each stick are two of what SGI calls “slices”, which are essentially nodes. Each slice is comprised of a CPU, one double-wide or two single wide accelerators, and up to two SATA disks. The CPU chosen for this task is an AMD Opteron 4100 “Lisbon” processor, which is housed on a “node board.” SGI opted for the no-frills, lower-power Lisbon processor (basically half a Magny-Cours Opteron) since its principle function is to drive the accelerator, rather than delivering a lot of compute on its own. Up to four DDR3 memory slots, operating at 1333 MHz, are available on the node board.

The default network is GigE, but a separate low profile PCIe slot is available on each slice for an InfiniBand adapter– either single plane or dual plane. This PCIe interface could theoretically be used to stuff another accelerator onto the node (and customers have asked for such an option), but SGI doesn’t currently support that configuration. The company also doesn’t support a 10 GbE option yet, although there’s nothing preventing the customer from plugging in their own adapters. One might wonder why SGI just didn’t slap an InfiniBand or 10 GbE chip down on the node board, but it looks like the rationale was to minimize the common infrastructure as much as possible, and let the customers upscale the configuration as needed via all the PCIe slots.

Since each stick has two slices, a maximally configured one can house 2 CPUs and 4 GPUs. This is how SGI is able to get their peak petaflop in a single cabinet. A cabinet in this case is what SGI calls their M-Rack, an extra-wide double rack with a switch rack in the middle. Since it’s basically two 42U compute racks, you can house 500 single-wide GPUs in it. If those are 2 teraflop AMD FireStream 9350s, you’ve got your petaflop, but just single precision.

Of course, many HPC customers are going to opt for NVIDIA’s Fermi GPUs, since they have up-market features like ECC memory, which is crucial for a lot of heavy-duty computing. In this case though, a cabinet would only yield about 250 single precision teraflops. Of course since the Prism is designed for future accelerators, it won’t be too many years before we’ll be getting a full double precision petaflop in a cabinet.

SGI is targeting Prism at market segments that contain the most enthusiastic early adopters of HPC accelerators, namely oil and gas, media/rendering, education, research, defense/intelligence, and bio/pharma. A number of companies in these areas have already deployed accelerator-based machines — mostly GPU-equipped servers — and these customers would be the ones most likely interested in scaling up to a Prism XL.

The Tilera acceleration option is somewhat of a different animal. In this case, the user is not concerned with FLOPS, since these manycore processors are rather weak in the floating point department.  The intention here is to deliver lots of integer operations in a very power-efficient package. The 64-core Tilera chip delivers 443 billion operations per second, yet consume only about 20 watts. According to Mannel, Tilera deployments are intended to be used in places where FPGA acceleration has been used in the past, for example, in encryption, image and signal processing; network packet inspection, web/content delivery, and media format conversion.

Unlike FPGAs, Tilera processors can be programmed with conventional tools and language frameworks, making application development and maintenance much less complicated. That wouldn’t necessarily rule out a future FPGA accelerator for Prism though. Mannel, in fact, says a few customers are interested in such an option.

With all different accelerator options, SGI is relying mainly on third-party vendors for software support. This includes compilers, drivers, and libraries from NVIDIA, AMD and Tilera for their respective hardware. SGI is also packaging development tools from Allinea, CAPS Enterprise, Portland Group, and Rogue Wave. For job scheduling, they offer Altair PBS Professional, which is conveniently accelerator-aware, while SGI’s own Management Center is used for system management. OS support for the initial offering is Red Hat RHEL 5.5 and CentOS 5.5.

As of this writing, Prism XL pricing was not available, but one would expect to pay some premium compared to vanilla CPU-GPU server-based systems on the market today.  The first Prisms will be available for shipping in December.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This