SGI Gets Its Mojo Working for Supercomputing Conference

By Michael Feldman

November 15, 2010

SGI has made good on its promise to create a petaflop-in-a-cabinet supercomputer that can scale up to tens and even hundreds of cabinets. Developed under the code name “Project Mojo,” the company has dubbed the new product Prism XL. SGI will be showcasing the system this week in their exhibit booth at the Supercomputing Conference in New Orleans.

Not surprisingly, the Prism system relies on accelerator technology to deliver so much computational brawn. Specifically, SGI is supporting configurations with NVIDIA Tesla GPUs, AMD/ATI GPUs, and Tilera processors. The central idea was to create an open and scalable platform that exploited all the advantages of accelerator technology, namely lower cost, better energy efficiency, and a smaller footprint. According to Bill Mannel, SGI’s VP of product marketing, what they’ve achieved with Prism is a system that costs about 25 percent less than a comparable x86-based supercomputer, and in just one-tenth the floor space.

Computational density was a central goal of Project Mojo. “Around this time last year, a set of SGI executives, including myself, sat in a room in Austin Texas and asked ‘How can we put a petaflop in a single cabinet?'” explains Mannel. “And that was how the Project Mojo product got started.”

The design went through a number of iterations. The original focus was on ATI GPUs since, at least at the time, they offered the most performant processors. (Arguably they still do; the top-end ATI Radeon 5970 chip delivers 4.64 single precision teraflops or 928 double precision gigaflops.) Mannel says that customer feedback drove them to a more general-purpose design that could accommodate virtually any accelerator that was PCIe-friendly.

The first Prism systems available in December can be ordered with NVIDIA Tesla M2050 or M2070 modules, AMD FireStream 9370 (“Osprey”) cards, or 64-core Tilera processor. In January, SGI intends to add support for the AMD FireStream 9350 (“Kestrel”). Mannel says SGI is also considering offering the aforementioned Radeon HD 5970 as an option at some point. Presumably Prism could also be equipped with Intel’s upcoming Many Integrated Core (MIC) “Knights Corner” accelerator further down the road. SGI wouldn’t commit to a future MIC offering, other than to say that they are “giving it serious consideration.”

The Prism design centers around maximizing the number of PCIe interfaces, and thus the number of accelerator cards, that can be packed into a standard rack. Each of the slots are PCIe Gen 2 x16 interfaces, so every accelerator can enjoy full I/O bandwidth to the motherboard. The slot can draw up to 300 watts, which is designed to accommodate all current accelerator cards — the current crop of GPGPUs top out at about 250 watts — as well as all future ones on the major vendors’ roadmaps.

The basic component of a Prism system is a “stick,” a modular enclosure that is indeed stick-like — 5.78 inch wide, 3.34 inch high, and 37 inches deep. Each one is powered by a 1050 watt power supply, and despite the density, the whole apparatus is air-cooled. A 42U rack can be outfitted with up to 63 sticks, in a 3-by-21 honeycomb pattern. The sticks are very much plug and play; you can actually take one out of a rack and plug it into a wall socket in a lab or office should you need to do some local development work.

Inside each stick are two of what SGI calls “slices”, which are essentially nodes. Each slice is comprised of a CPU, one double-wide or two single wide accelerators, and up to two SATA disks. The CPU chosen for this task is an AMD Opteron 4100 “Lisbon” processor, which is housed on a “node board.” SGI opted for the no-frills, lower-power Lisbon processor (basically half a Magny-Cours Opteron) since its principle function is to drive the accelerator, rather than delivering a lot of compute on its own. Up to four DDR3 memory slots, operating at 1333 MHz, are available on the node board.

The default network is GigE, but a separate low profile PCIe slot is available on each slice for an InfiniBand adapter– either single plane or dual plane. This PCIe interface could theoretically be used to stuff another accelerator onto the node (and customers have asked for such an option), but SGI doesn’t currently support that configuration. The company also doesn’t support a 10 GbE option yet, although there’s nothing preventing the customer from plugging in their own adapters. One might wonder why SGI just didn’t slap an InfiniBand or 10 GbE chip down on the node board, but it looks like the rationale was to minimize the common infrastructure as much as possible, and let the customers upscale the configuration as needed via all the PCIe slots.

Since each stick has two slices, a maximally configured one can house 2 CPUs and 4 GPUs. This is how SGI is able to get their peak petaflop in a single cabinet. A cabinet in this case is what SGI calls their M-Rack, an extra-wide double rack with a switch rack in the middle. Since it’s basically two 42U compute racks, you can house 500 single-wide GPUs in it. If those are 2 teraflop AMD FireStream 9350s, you’ve got your petaflop, but just single precision.

Of course, many HPC customers are going to opt for NVIDIA’s Fermi GPUs, since they have up-market features like ECC memory, which is crucial for a lot of heavy-duty computing. In this case though, a cabinet would only yield about 250 single precision teraflops. Of course since the Prism is designed for future accelerators, it won’t be too many years before we’ll be getting a full double precision petaflop in a cabinet.

SGI is targeting Prism at market segments that contain the most enthusiastic early adopters of HPC accelerators, namely oil and gas, media/rendering, education, research, defense/intelligence, and bio/pharma. A number of companies in these areas have already deployed accelerator-based machines — mostly GPU-equipped servers — and these customers would be the ones most likely interested in scaling up to a Prism XL.

The Tilera acceleration option is somewhat of a different animal. In this case, the user is not concerned with FLOPS, since these manycore processors are rather weak in the floating point department.  The intention here is to deliver lots of integer operations in a very power-efficient package. The 64-core Tilera chip delivers 443 billion operations per second, yet consume only about 20 watts. According to Mannel, Tilera deployments are intended to be used in places where FPGA acceleration has been used in the past, for example, in encryption, image and signal processing; network packet inspection, web/content delivery, and media format conversion.

Unlike FPGAs, Tilera processors can be programmed with conventional tools and language frameworks, making application development and maintenance much less complicated. That wouldn’t necessarily rule out a future FPGA accelerator for Prism though. Mannel, in fact, says a few customers are interested in such an option.

With all different accelerator options, SGI is relying mainly on third-party vendors for software support. This includes compilers, drivers, and libraries from NVIDIA, AMD and Tilera for their respective hardware. SGI is also packaging development tools from Allinea, CAPS Enterprise, Portland Group, and Rogue Wave. For job scheduling, they offer Altair PBS Professional, which is conveniently accelerator-aware, while SGI’s own Management Center is used for system management. OS support for the initial offering is Red Hat RHEL 5.5 and CentOS 5.5.

As of this writing, Prism XL pricing was not available, but one would expect to pay some premium compared to vanilla CPU-GPU server-based systems on the market today.  The first Prisms will be available for shipping in December.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This