SGI Gets Its Mojo Working for Supercomputing Conference

By Michael Feldman

November 15, 2010

SGI has made good on its promise to create a petaflop-in-a-cabinet supercomputer that can scale up to tens and even hundreds of cabinets. Developed under the code name “Project Mojo,” the company has dubbed the new product Prism XL. SGI will be showcasing the system this week in their exhibit booth at the Supercomputing Conference in New Orleans.

Not surprisingly, the Prism system relies on accelerator technology to deliver so much computational brawn. Specifically, SGI is supporting configurations with NVIDIA Tesla GPUs, AMD/ATI GPUs, and Tilera processors. The central idea was to create an open and scalable platform that exploited all the advantages of accelerator technology, namely lower cost, better energy efficiency, and a smaller footprint. According to Bill Mannel, SGI’s VP of product marketing, what they’ve achieved with Prism is a system that costs about 25 percent less than a comparable x86-based supercomputer, and in just one-tenth the floor space.

Computational density was a central goal of Project Mojo. “Around this time last year, a set of SGI executives, including myself, sat in a room in Austin Texas and asked ‘How can we put a petaflop in a single cabinet?'” explains Mannel. “And that was how the Project Mojo product got started.”

The design went through a number of iterations. The original focus was on ATI GPUs since, at least at the time, they offered the most performant processors. (Arguably they still do; the top-end ATI Radeon 5970 chip delivers 4.64 single precision teraflops or 928 double precision gigaflops.) Mannel says that customer feedback drove them to a more general-purpose design that could accommodate virtually any accelerator that was PCIe-friendly.

The first Prism systems available in December can be ordered with NVIDIA Tesla M2050 or M2070 modules, AMD FireStream 9370 (“Osprey”) cards, or 64-core Tilera processor. In January, SGI intends to add support for the AMD FireStream 9350 (“Kestrel”). Mannel says SGI is also considering offering the aforementioned Radeon HD 5970 as an option at some point. Presumably Prism could also be equipped with Intel’s upcoming Many Integrated Core (MIC) “Knights Corner” accelerator further down the road. SGI wouldn’t commit to a future MIC offering, other than to say that they are “giving it serious consideration.”

The Prism design centers around maximizing the number of PCIe interfaces, and thus the number of accelerator cards, that can be packed into a standard rack. Each of the slots are PCIe Gen 2 x16 interfaces, so every accelerator can enjoy full I/O bandwidth to the motherboard. The slot can draw up to 300 watts, which is designed to accommodate all current accelerator cards — the current crop of GPGPUs top out at about 250 watts — as well as all future ones on the major vendors’ roadmaps.

The basic component of a Prism system is a “stick,” a modular enclosure that is indeed stick-like — 5.78 inch wide, 3.34 inch high, and 37 inches deep. Each one is powered by a 1050 watt power supply, and despite the density, the whole apparatus is air-cooled. A 42U rack can be outfitted with up to 63 sticks, in a 3-by-21 honeycomb pattern. The sticks are very much plug and play; you can actually take one out of a rack and plug it into a wall socket in a lab or office should you need to do some local development work.

Inside each stick are two of what SGI calls “slices”, which are essentially nodes. Each slice is comprised of a CPU, one double-wide or two single wide accelerators, and up to two SATA disks. The CPU chosen for this task is an AMD Opteron 4100 “Lisbon” processor, which is housed on a “node board.” SGI opted for the no-frills, lower-power Lisbon processor (basically half a Magny-Cours Opteron) since its principle function is to drive the accelerator, rather than delivering a lot of compute on its own. Up to four DDR3 memory slots, operating at 1333 MHz, are available on the node board.

The default network is GigE, but a separate low profile PCIe slot is available on each slice for an InfiniBand adapter– either single plane or dual plane. This PCIe interface could theoretically be used to stuff another accelerator onto the node (and customers have asked for such an option), but SGI doesn’t currently support that configuration. The company also doesn’t support a 10 GbE option yet, although there’s nothing preventing the customer from plugging in their own adapters. One might wonder why SGI just didn’t slap an InfiniBand or 10 GbE chip down on the node board, but it looks like the rationale was to minimize the common infrastructure as much as possible, and let the customers upscale the configuration as needed via all the PCIe slots.

Since each stick has two slices, a maximally configured one can house 2 CPUs and 4 GPUs. This is how SGI is able to get their peak petaflop in a single cabinet. A cabinet in this case is what SGI calls their M-Rack, an extra-wide double rack with a switch rack in the middle. Since it’s basically two 42U compute racks, you can house 500 single-wide GPUs in it. If those are 2 teraflop AMD FireStream 9350s, you’ve got your petaflop, but just single precision.

Of course, many HPC customers are going to opt for NVIDIA’s Fermi GPUs, since they have up-market features like ECC memory, which is crucial for a lot of heavy-duty computing. In this case though, a cabinet would only yield about 250 single precision teraflops. Of course since the Prism is designed for future accelerators, it won’t be too many years before we’ll be getting a full double precision petaflop in a cabinet.

SGI is targeting Prism at market segments that contain the most enthusiastic early adopters of HPC accelerators, namely oil and gas, media/rendering, education, research, defense/intelligence, and bio/pharma. A number of companies in these areas have already deployed accelerator-based machines — mostly GPU-equipped servers — and these customers would be the ones most likely interested in scaling up to a Prism XL.

The Tilera acceleration option is somewhat of a different animal. In this case, the user is not concerned with FLOPS, since these manycore processors are rather weak in the floating point department.  The intention here is to deliver lots of integer operations in a very power-efficient package. The 64-core Tilera chip delivers 443 billion operations per second, yet consume only about 20 watts. According to Mannel, Tilera deployments are intended to be used in places where FPGA acceleration has been used in the past, for example, in encryption, image and signal processing; network packet inspection, web/content delivery, and media format conversion.

Unlike FPGAs, Tilera processors can be programmed with conventional tools and language frameworks, making application development and maintenance much less complicated. That wouldn’t necessarily rule out a future FPGA accelerator for Prism though. Mannel, in fact, says a few customers are interested in such an option.

With all different accelerator options, SGI is relying mainly on third-party vendors for software support. This includes compilers, drivers, and libraries from NVIDIA, AMD and Tilera for their respective hardware. SGI is also packaging development tools from Allinea, CAPS Enterprise, Portland Group, and Rogue Wave. For job scheduling, they offer Altair PBS Professional, which is conveniently accelerator-aware, while SGI’s own Management Center is used for system management. OS support for the initial offering is Red Hat RHEL 5.5 and CentOS 5.5.

As of this writing, Prism XL pricing was not available, but one would expect to pay some premium compared to vanilla CPU-GPU server-based systems on the market today.  The first Prisms will be available for shipping in December.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This