SGI Gets Its Mojo Working for Supercomputing Conference

By Michael Feldman

November 15, 2010

SGI has made good on its promise to create a petaflop-in-a-cabinet supercomputer that can scale up to tens and even hundreds of cabinets. Developed under the code name “Project Mojo,” the company has dubbed the new product Prism XL. SGI will be showcasing the system this week in their exhibit booth at the Supercomputing Conference in New Orleans.

Not surprisingly, the Prism system relies on accelerator technology to deliver so much computational brawn. Specifically, SGI is supporting configurations with NVIDIA Tesla GPUs, AMD/ATI GPUs, and Tilera processors. The central idea was to create an open and scalable platform that exploited all the advantages of accelerator technology, namely lower cost, better energy efficiency, and a smaller footprint. According to Bill Mannel, SGI’s VP of product marketing, what they’ve achieved with Prism is a system that costs about 25 percent less than a comparable x86-based supercomputer, and in just one-tenth the floor space.

Computational density was a central goal of Project Mojo. “Around this time last year, a set of SGI executives, including myself, sat in a room in Austin Texas and asked ‘How can we put a petaflop in a single cabinet?'” explains Mannel. “And that was how the Project Mojo product got started.”

The design went through a number of iterations. The original focus was on ATI GPUs since, at least at the time, they offered the most performant processors. (Arguably they still do; the top-end ATI Radeon 5970 chip delivers 4.64 single precision teraflops or 928 double precision gigaflops.) Mannel says that customer feedback drove them to a more general-purpose design that could accommodate virtually any accelerator that was PCIe-friendly.

The first Prism systems available in December can be ordered with NVIDIA Tesla M2050 or M2070 modules, AMD FireStream 9370 (“Osprey”) cards, or 64-core Tilera processor. In January, SGI intends to add support for the AMD FireStream 9350 (“Kestrel”). Mannel says SGI is also considering offering the aforementioned Radeon HD 5970 as an option at some point. Presumably Prism could also be equipped with Intel’s upcoming Many Integrated Core (MIC) “Knights Corner” accelerator further down the road. SGI wouldn’t commit to a future MIC offering, other than to say that they are “giving it serious consideration.”

The Prism design centers around maximizing the number of PCIe interfaces, and thus the number of accelerator cards, that can be packed into a standard rack. Each of the slots are PCIe Gen 2 x16 interfaces, so every accelerator can enjoy full I/O bandwidth to the motherboard. The slot can draw up to 300 watts, which is designed to accommodate all current accelerator cards — the current crop of GPGPUs top out at about 250 watts — as well as all future ones on the major vendors’ roadmaps.

The basic component of a Prism system is a “stick,” a modular enclosure that is indeed stick-like — 5.78 inch wide, 3.34 inch high, and 37 inches deep. Each one is powered by a 1050 watt power supply, and despite the density, the whole apparatus is air-cooled. A 42U rack can be outfitted with up to 63 sticks, in a 3-by-21 honeycomb pattern. The sticks are very much plug and play; you can actually take one out of a rack and plug it into a wall socket in a lab or office should you need to do some local development work.

Inside each stick are two of what SGI calls “slices”, which are essentially nodes. Each slice is comprised of a CPU, one double-wide or two single wide accelerators, and up to two SATA disks. The CPU chosen for this task is an AMD Opteron 4100 “Lisbon” processor, which is housed on a “node board.” SGI opted for the no-frills, lower-power Lisbon processor (basically half a Magny-Cours Opteron) since its principle function is to drive the accelerator, rather than delivering a lot of compute on its own. Up to four DDR3 memory slots, operating at 1333 MHz, are available on the node board.

The default network is GigE, but a separate low profile PCIe slot is available on each slice for an InfiniBand adapter– either single plane or dual plane. This PCIe interface could theoretically be used to stuff another accelerator onto the node (and customers have asked for such an option), but SGI doesn’t currently support that configuration. The company also doesn’t support a 10 GbE option yet, although there’s nothing preventing the customer from plugging in their own adapters. One might wonder why SGI just didn’t slap an InfiniBand or 10 GbE chip down on the node board, but it looks like the rationale was to minimize the common infrastructure as much as possible, and let the customers upscale the configuration as needed via all the PCIe slots.

Since each stick has two slices, a maximally configured one can house 2 CPUs and 4 GPUs. This is how SGI is able to get their peak petaflop in a single cabinet. A cabinet in this case is what SGI calls their M-Rack, an extra-wide double rack with a switch rack in the middle. Since it’s basically two 42U compute racks, you can house 500 single-wide GPUs in it. If those are 2 teraflop AMD FireStream 9350s, you’ve got your petaflop, but just single precision.

Of course, many HPC customers are going to opt for NVIDIA’s Fermi GPUs, since they have up-market features like ECC memory, which is crucial for a lot of heavy-duty computing. In this case though, a cabinet would only yield about 250 single precision teraflops. Of course since the Prism is designed for future accelerators, it won’t be too many years before we’ll be getting a full double precision petaflop in a cabinet.

SGI is targeting Prism at market segments that contain the most enthusiastic early adopters of HPC accelerators, namely oil and gas, media/rendering, education, research, defense/intelligence, and bio/pharma. A number of companies in these areas have already deployed accelerator-based machines — mostly GPU-equipped servers — and these customers would be the ones most likely interested in scaling up to a Prism XL.

The Tilera acceleration option is somewhat of a different animal. In this case, the user is not concerned with FLOPS, since these manycore processors are rather weak in the floating point department.  The intention here is to deliver lots of integer operations in a very power-efficient package. The 64-core Tilera chip delivers 443 billion operations per second, yet consume only about 20 watts. According to Mannel, Tilera deployments are intended to be used in places where FPGA acceleration has been used in the past, for example, in encryption, image and signal processing; network packet inspection, web/content delivery, and media format conversion.

Unlike FPGAs, Tilera processors can be programmed with conventional tools and language frameworks, making application development and maintenance much less complicated. That wouldn’t necessarily rule out a future FPGA accelerator for Prism though. Mannel, in fact, says a few customers are interested in such an option.

With all different accelerator options, SGI is relying mainly on third-party vendors for software support. This includes compilers, drivers, and libraries from NVIDIA, AMD and Tilera for their respective hardware. SGI is also packaging development tools from Allinea, CAPS Enterprise, Portland Group, and Rogue Wave. For job scheduling, they offer Altair PBS Professional, which is conveniently accelerator-aware, while SGI’s own Management Center is used for system management. OS support for the initial offering is Red Hat RHEL 5.5 and CentOS 5.5.

As of this writing, Prism XL pricing was not available, but one would expect to pay some premium compared to vanilla CPU-GPU server-based systems on the market today.  The first Prisms will be available for shipping in December.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This