A Call to Arms for Parallel Programming Standards

By Nicole Hemsoth

November 16, 2010

Although the parallel programming landscape is relatively young, it’s already easy to get lost in. Beside legacy frameworks like MPI and OpenMP, we now have NVIDIA’s CUDA, OpenCL, Cilk, Intel Threading Building Blocks, Microsoft’s parallel programming extensions for .NET, and a whole gamut of PGAS languages.

And according to Intel’s Tim Mattson, that’s not necessarily a good thing. Mattson, who is a principal engineer (and parallel programming evangelist) at the company’s Visual Applications Research Lab, says all these software frameworks are leading to what he calls “choice overload” and this concerns him greatly.

From his point of view, the road to parallel programming need to be paved with open industry standards. And today then means MPI, OpenMP, and OpenCL. Given that some of Intel’s parallel software offerings such as the Cilk Plus and Array Building Blocks are proprietary, that viewpoint sometimes puts him at odds with his own company. But Mattson’s role as an Intel researcher forces him to look beyond the one or two-year timeframe of product cycles. He’s in it for the long-term, and that means Mattson is looking at what is best for the ecosystem ten years out. “First and foremost, we have to make sure that the right standards exist and they run best on Intel products,” he says.

At SC10 this year, Mattson will be in full software evangelist mode, speaking at seven different tutorials, BoFs and panels on various parallel programming topics. Three of these are geared to fire up the troops for OpenCL, an open standard parallel programming framework for heterogeneous multicore architectures. HPCwire spoke with Mattson shortly before the conference about the importance of open standards, his unapologetic enthusiasm for OpenCL, and his open animosity for the CUDA programming language.

HPCwire: What is the significance of OpenCL and why are you devoting so much time talking about it at SC10?

Tim Mattson: I think OpenCL is perhaps the most important development in the last five, if not the last ten years. The reason I make such an over-the-top statement is that I believe the core to solving the parallel programming challenge is standards. Only an idiot software developer would write code using a propriety API. Since I don’t like to work with idiots (laughs), I want to support good software developers out there by making sure they have the full suite of standards that they need.

So we have message passing covered: MPI. It’s great. We have shared memory covered: OpenMP. It’s great. The glaring hole — because frankly I don’t think any of us saw it coming in the early 2000s — is heterogenous platforms. So we have to fill that hole, and that’s what OpenCL does. So I think it’s incredibly important because now with MPI, OpenMP and OpenCL we’ve got the space covered with these low-level basic programming standards that are required to move things forward.

HPCwire: Well as far as openness goes, NVIDIA’s CUDA programming API is available for any vendor to implement for their particular parallel hardware architecture. For example, AMD could support CUDA for their x86 and GPU platforms. So couldn’t CUDA be adopted as a standard as well?

Mattson: Well, just think about it. I can’t speak for AMD, but why would Intel put resources into an API or language that we have absolutely no say in over how it’s going to evolve? To call CUDA a standard is just insulting. It’s not a standard until the various players can all have a voice in it. It’s ridiculous. If NVIDIA was serious about it, they would create an industry working group that owns the development of CUDA’s API and languages and that has a full voice in what happens with it. Oh, by the way, that’s what OpenCL is.

HPCwire: But there is at least one example of a standard language that emerged from a vendor initiative. Java was controlled by Sun Microsystems for many years and was adopted as a commercial standard because it became so popular across the industry. Don’t you think CUDA could follow that model?

Mattson: Well I know that’s what NVIDIA would like to see happen. And yes, Java is the one instance that would call into question how absolute my statement is. Java though was coming into a very different market and was tightly associated with the Web browser — a platform that cut across the industry. And Sun showed very early on that they were willing to support it as a cross-platform language. They had Java available on x86 and Sparc and showed a willingness to work across the vendors. NVIDIA — rationally, by the way — isn’t doing this with CUDA.

When you look closely at OpenCL, it covers everything CUDA can do and more. OpenCL has all the key vendors and covers a much wider space than CUDA. We’ve got the embedded people, the cell phone vendors, and game vendors all involved. So OpenCL is the right way to go; CUDA is the wrong way to go.

HPCwire: In the high performance computing community, though, there has been criticism that OpenCL doesn’t deliver the kind of performance required for HPC codes. Do you think that’s a fair assessment?

Mattson: That’s a statement that’s both true and false. There’s nothing pathological in the definition of OpenCL that prevents it from being every bit as efficient as CUDA. The thing about OpenCL is that it’s young; it just hasn’t been out very long. So it really comes down to the vendors as far as the quality of their implementations.

I think it’s important for the programmers out there — and let’s face it, they are the end user community for these technologies — to steer things in the right direction by insisting on standards. Look at how MPI and OpenMP came into existence. In both those cases, the user community insisted that these standards be the foundation of the software ecosystem, and the vendors stood behind them. We need people to do the same thing here and not get caught up with point solutions.

If NVIDIA engineers spent as much time optimizing OpenCL, it would run as fast as CUDA. So the performance arguments don’t hold a lot of sway with me, except when someone can say this feature of the language as defined is fundamentally going to be inefficient regardless of the quality of implementation. When people find those, we in the OpenCL group take it very seriously.

We’re roughly on a two-year cadence of coming out with new releases of the OpenCL spec, and we’re very focused on finding the weakness in OpenCL and aggressively evolving the language and to stay right in line with the latest hardware trends.

HPCwire: There are plenty of other languages that address multicore parallelism, some of which have been introduced by Intel. How does OpenCL fit in?

Mattson: Let me be really clear. There are three distinct standards that address multicore. MPI, for example, works great on multicore. OpenMP, if you have a shared address space, works really well too. And OpenCL covers heterogenous architectures. It’s really the trio that I’m pushing and Intel is 100 percent behind them.

On the other hand, yes, there is a trend that I find deeply disturbing of vendors wanting to distinguish themselves by creating new languages and proprietary APIs. It’s disturbing because time spent on a new language or proprietary API is time not spent on improving and establishing these standards. So this is where I’m kind of at odds with some of my colleagues at Intel. That’s just the way it goes.

Let’s face it. Vendors, left to their devices, want people to adopt a proprietary API that lock them into their platform. That’s not bad. NVIDIA is completely rational in wanting to lock people into their platform with CUDA. If I was working at NVIDIA, I’d probably be trying to do the same think. I think it’s up to the user community to refuse to let users get away with that game. They can do that by insisting on standards or open source solutions.

The three standards I mentioned are where I think most of the resource should go. But Intel did release Task Building Blocks –TBB — as open source. That was a very responsible thing to do. I was very excited, as was the TBB team, when that happened.

HPCwire: Another language is Ct, which started as a research project at Intel and has now been commercialized. How does that fit in to this parallel language ecosystem?

Mattson: Ct, which by the way, is now called Array Building Blocks, is a higher level abstraction of parallelism. While I’m a huge supporter of what they are doing with Array Building Blocks, [as for] how useful it will be in the marketplace, I’m not sure because it is proprietary. But I think some of the optimizations it does under the covers is very important. There are a lot of really important things about that project.

But I think we should distinguish creating good technologies versus confusing the market by having too many options out there. In 2004, if you wanted to do parallel programming you had Windows threads, pthreads on Linux, OpenMP, and MPI. Five options was fine. Now there are a dozen or more parallel programming languages out there. So I think we’re losing ground. I think choice overload is real. And that concerns me deeply.

HPCwire: Do you think parallelizing established languages like Java and Python is a positive development?

Mattson: Let me tell you where I think things are going and where we’ll be in 10 years. The question is do we get there cleanly or do we get there with messy detours along the way. Ultimately I think we have to raise the level of abstraction, which is what you see with these efforts around building parallelism into Python. We need to focus on the higher level frameworks that people are increasingly using to write software.

This is really what I spend the bulk of my time doing in my personal research, and with a group at UC Berkeley — to define patterned languages from which we can derive the frameworks, which then map down to the lower-level languages. I really want to make it so that only a small number of performance-oriented, efficiency layer programmers worry about these low-level languages — OpenCL, MPI, OpenMP, or TBB. But beyond that, people need to have some higher level framework they can work with. A parallel Python project like Copperhead is such an example. I’m very excited about it because I think that’s clearly the direction things are moving.

I learned this most clearly looking at the gaming industry, because that industry has been the leader in adopting multicore, and I mean adopting multicore as a successful business venture. Researchers have been playing with it for a long time, but in terms of creating multicore software, selling it, and building a profitable businesses around it, the gaming industry has led the charge.

They have these separations of concerns very sharply defined, and it works extremely well for them. Most of their programmers work in a higher level scripting language or with collections of libraries written in C++. And then they have a small number of “technology programmers” which are on the order of 10 percent of their software developers. They’re the guys who do the low-level stuff. And I think that kind of separation of concerns is what’s absolutely critical.

HPCwire: So you think higher level frameworks will be key to enabling these low-level parallel programming APIs you’re talking about?

Mattson: When we were sitting around creating OpenCL, we explicitly talked about that as our goal. In fact, you’ll find some places in the spec where we describe OpenCL as a hardware abstraction layer. We’re perfectly aware that OpenCL is obnoxiously low-level. It exposes so many details of the underlying platform. We achieve extreme portability by exposing everything and abstracting as little as we can. The reason we think that’s the right thing to do is because we view OpenCL ultimately as being a target for higher level frameworks. It’s young, so those higher level frameworks don’t exist yet, but I think they will and I think that will be the long range trend, not just for OpenCL, but for all these parallel languages.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This