A Call to Arms for Parallel Programming Standards

By Nicole Hemsoth

November 16, 2010

Although the parallel programming landscape is relatively young, it’s already easy to get lost in. Beside legacy frameworks like MPI and OpenMP, we now have NVIDIA’s CUDA, OpenCL, Cilk, Intel Threading Building Blocks, Microsoft’s parallel programming extensions for .NET, and a whole gamut of PGAS languages.

And according to Intel’s Tim Mattson, that’s not necessarily a good thing. Mattson, who is a principal engineer (and parallel programming evangelist) at the company’s Visual Applications Research Lab, says all these software frameworks are leading to what he calls “choice overload” and this concerns him greatly.

From his point of view, the road to parallel programming need to be paved with open industry standards. And today then means MPI, OpenMP, and OpenCL. Given that some of Intel’s parallel software offerings such as the Cilk Plus and Array Building Blocks are proprietary, that viewpoint sometimes puts him at odds with his own company. But Mattson’s role as an Intel researcher forces him to look beyond the one or two-year timeframe of product cycles. He’s in it for the long-term, and that means Mattson is looking at what is best for the ecosystem ten years out. “First and foremost, we have to make sure that the right standards exist and they run best on Intel products,” he says.

At SC10 this year, Mattson will be in full software evangelist mode, speaking at seven different tutorials, BoFs and panels on various parallel programming topics. Three of these are geared to fire up the troops for OpenCL, an open standard parallel programming framework for heterogeneous multicore architectures. HPCwire spoke with Mattson shortly before the conference about the importance of open standards, his unapologetic enthusiasm for OpenCL, and his open animosity for the CUDA programming language.

HPCwire: What is the significance of OpenCL and why are you devoting so much time talking about it at SC10?

Tim Mattson: I think OpenCL is perhaps the most important development in the last five, if not the last ten years. The reason I make such an over-the-top statement is that I believe the core to solving the parallel programming challenge is standards. Only an idiot software developer would write code using a propriety API. Since I don’t like to work with idiots (laughs), I want to support good software developers out there by making sure they have the full suite of standards that they need.

So we have message passing covered: MPI. It’s great. We have shared memory covered: OpenMP. It’s great. The glaring hole — because frankly I don’t think any of us saw it coming in the early 2000s — is heterogenous platforms. So we have to fill that hole, and that’s what OpenCL does. So I think it’s incredibly important because now with MPI, OpenMP and OpenCL we’ve got the space covered with these low-level basic programming standards that are required to move things forward.

HPCwire: Well as far as openness goes, NVIDIA’s CUDA programming API is available for any vendor to implement for their particular parallel hardware architecture. For example, AMD could support CUDA for their x86 and GPU platforms. So couldn’t CUDA be adopted as a standard as well?

Mattson: Well, just think about it. I can’t speak for AMD, but why would Intel put resources into an API or language that we have absolutely no say in over how it’s going to evolve? To call CUDA a standard is just insulting. It’s not a standard until the various players can all have a voice in it. It’s ridiculous. If NVIDIA was serious about it, they would create an industry working group that owns the development of CUDA’s API and languages and that has a full voice in what happens with it. Oh, by the way, that’s what OpenCL is.

HPCwire: But there is at least one example of a standard language that emerged from a vendor initiative. Java was controlled by Sun Microsystems for many years and was adopted as a commercial standard because it became so popular across the industry. Don’t you think CUDA could follow that model?

Mattson: Well I know that’s what NVIDIA would like to see happen. And yes, Java is the one instance that would call into question how absolute my statement is. Java though was coming into a very different market and was tightly associated with the Web browser — a platform that cut across the industry. And Sun showed very early on that they were willing to support it as a cross-platform language. They had Java available on x86 and Sparc and showed a willingness to work across the vendors. NVIDIA — rationally, by the way — isn’t doing this with CUDA.

When you look closely at OpenCL, it covers everything CUDA can do and more. OpenCL has all the key vendors and covers a much wider space than CUDA. We’ve got the embedded people, the cell phone vendors, and game vendors all involved. So OpenCL is the right way to go; CUDA is the wrong way to go.

HPCwire: In the high performance computing community, though, there has been criticism that OpenCL doesn’t deliver the kind of performance required for HPC codes. Do you think that’s a fair assessment?

Mattson: That’s a statement that’s both true and false. There’s nothing pathological in the definition of OpenCL that prevents it from being every bit as efficient as CUDA. The thing about OpenCL is that it’s young; it just hasn’t been out very long. So it really comes down to the vendors as far as the quality of their implementations.

I think it’s important for the programmers out there — and let’s face it, they are the end user community for these technologies — to steer things in the right direction by insisting on standards. Look at how MPI and OpenMP came into existence. In both those cases, the user community insisted that these standards be the foundation of the software ecosystem, and the vendors stood behind them. We need people to do the same thing here and not get caught up with point solutions.

If NVIDIA engineers spent as much time optimizing OpenCL, it would run as fast as CUDA. So the performance arguments don’t hold a lot of sway with me, except when someone can say this feature of the language as defined is fundamentally going to be inefficient regardless of the quality of implementation. When people find those, we in the OpenCL group take it very seriously.

We’re roughly on a two-year cadence of coming out with new releases of the OpenCL spec, and we’re very focused on finding the weakness in OpenCL and aggressively evolving the language and to stay right in line with the latest hardware trends.

HPCwire: There are plenty of other languages that address multicore parallelism, some of which have been introduced by Intel. How does OpenCL fit in?

Mattson: Let me be really clear. There are three distinct standards that address multicore. MPI, for example, works great on multicore. OpenMP, if you have a shared address space, works really well too. And OpenCL covers heterogenous architectures. It’s really the trio that I’m pushing and Intel is 100 percent behind them.

On the other hand, yes, there is a trend that I find deeply disturbing of vendors wanting to distinguish themselves by creating new languages and proprietary APIs. It’s disturbing because time spent on a new language or proprietary API is time not spent on improving and establishing these standards. So this is where I’m kind of at odds with some of my colleagues at Intel. That’s just the way it goes.

Let’s face it. Vendors, left to their devices, want people to adopt a proprietary API that lock them into their platform. That’s not bad. NVIDIA is completely rational in wanting to lock people into their platform with CUDA. If I was working at NVIDIA, I’d probably be trying to do the same think. I think it’s up to the user community to refuse to let users get away with that game. They can do that by insisting on standards or open source solutions.

The three standards I mentioned are where I think most of the resource should go. But Intel did release Task Building Blocks –TBB — as open source. That was a very responsible thing to do. I was very excited, as was the TBB team, when that happened.

HPCwire: Another language is Ct, which started as a research project at Intel and has now been commercialized. How does that fit in to this parallel language ecosystem?

Mattson: Ct, which by the way, is now called Array Building Blocks, is a higher level abstraction of parallelism. While I’m a huge supporter of what they are doing with Array Building Blocks, [as for] how useful it will be in the marketplace, I’m not sure because it is proprietary. But I think some of the optimizations it does under the covers is very important. There are a lot of really important things about that project.

But I think we should distinguish creating good technologies versus confusing the market by having too many options out there. In 2004, if you wanted to do parallel programming you had Windows threads, pthreads on Linux, OpenMP, and MPI. Five options was fine. Now there are a dozen or more parallel programming languages out there. So I think we’re losing ground. I think choice overload is real. And that concerns me deeply.

HPCwire: Do you think parallelizing established languages like Java and Python is a positive development?

Mattson: Let me tell you where I think things are going and where we’ll be in 10 years. The question is do we get there cleanly or do we get there with messy detours along the way. Ultimately I think we have to raise the level of abstraction, which is what you see with these efforts around building parallelism into Python. We need to focus on the higher level frameworks that people are increasingly using to write software.

This is really what I spend the bulk of my time doing in my personal research, and with a group at UC Berkeley — to define patterned languages from which we can derive the frameworks, which then map down to the lower-level languages. I really want to make it so that only a small number of performance-oriented, efficiency layer programmers worry about these low-level languages — OpenCL, MPI, OpenMP, or TBB. But beyond that, people need to have some higher level framework they can work with. A parallel Python project like Copperhead is such an example. I’m very excited about it because I think that’s clearly the direction things are moving.

I learned this most clearly looking at the gaming industry, because that industry has been the leader in adopting multicore, and I mean adopting multicore as a successful business venture. Researchers have been playing with it for a long time, but in terms of creating multicore software, selling it, and building a profitable businesses around it, the gaming industry has led the charge.

They have these separations of concerns very sharply defined, and it works extremely well for them. Most of their programmers work in a higher level scripting language or with collections of libraries written in C++. And then they have a small number of “technology programmers” which are on the order of 10 percent of their software developers. They’re the guys who do the low-level stuff. And I think that kind of separation of concerns is what’s absolutely critical.

HPCwire: So you think higher level frameworks will be key to enabling these low-level parallel programming APIs you’re talking about?

Mattson: When we were sitting around creating OpenCL, we explicitly talked about that as our goal. In fact, you’ll find some places in the spec where we describe OpenCL as a hardware abstraction layer. We’re perfectly aware that OpenCL is obnoxiously low-level. It exposes so many details of the underlying platform. We achieve extreme portability by exposing everything and abstracting as little as we can. The reason we think that’s the right thing to do is because we view OpenCL ultimately as being a target for higher level frameworks. It’s young, so those higher level frameworks don’t exist yet, but I think they will and I think that will be the long range trend, not just for OpenCL, but for all these parallel languages.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This