The Not-So-Unlikely Marriage of CUDA and x86

By Nicole Hemsoth

November 16, 2010

NVIDIA’s CUDA is easily the most popular programming language for general-purpose GPU computing. But one of the more interesting developments in the CUDA-verse doesn’t really involve GPUs at all. In September, HPC compiler vendor PGI (The Portland Group Inc.) announced its intent to build a CUDA compiler for x86 platforms. The technology will be demonstrated for the first time in public at SC10 this week in New Orleans.

To delve a little deeper into the what’s behind the CUDA x86 effort, HPCwire asked PGI senior compiler engineer Michael Wolfe about the rationale for producing such a product and how the technology will work.

HPCwire: Why CUDA for x86? Aren’t there enough parallel programming environments already available for this architecture?

Michael Wolfe: There are certainly many parallel programming approaches today, and no one would have created an analog to CUDA if the x86 were the only target. However, CUDA has been quite successful for programming NVIDIA GPUs. There are now customers who want portability of their CUDA programs beyond NVIDIA and GPUs. The PGI CUDA X86 compilers will provide that portability.

HPCwire: Do you think there is existing demand for such a product, or is this more of a if-we-build-it-they-will-come approach?

Wolfe: There is definitely demand for this. We approached our customers and surveyed the market before proceeding. We didn’t come up with this idea on our own.

HPCwire: What x86 hardware is being used to map the CUDA functionality? Is the intent to support both Intel and AMD platforms going forward?

Wolfe: We think of today’s GPUs as exploiting three levels of parallelism: SIMD parallelism within a “warp” (or thread block) and within a streaming multiprocessor; MIMD parallelism across thread blocks and across multiple streaming multiprocessors; and multithread parallelism, used to tolerate device memory latency. Today’s x86 processors have SIMD parallelism in the SSE (and soon AVX) instructions and MIMD parallelism across the multiple cores. Intel processors even support a limited amount of multithread parallelism. Our compilers will use the SSE, AVX and multicore parallelism.

HPCwire: What’s the point behind compiling to a “Unified Binary?” Using the same code base to target different platforms seems obvious, but at run time, won’t users know what the target is? Are you envisioning a cluster deployment scenario where only some of the nodes are equipped with GPUs, with the rest CPU only?

Wolfe: It’s not likely users will make production runs on clusters where only some of the nodes are GPU-enabled. The PGI Unified Binary allows HPC users who regularly access multiple server platforms to build one version of their application that is optimized for Intel, AMD and GPU-enabled compute nodes. Some sites even use it to ease the transition from one generation of Intel or AMD CPU to the next. The PGI Unified Binary for multiple x86 CPUs has been quite popular with independent software vendors who want to ship optimized applications without having to manage a different binary for each different processor type. We expect the same to be true for CUDA; a vendor or developer can produce a single executable that will execute using a GPU when available, and use the host otherwise.

HPCwire: Beyond that, is their any utility to writing x86-specific CUDA source code that is optimized for the CPU?

Wolfe: As I said before, an API-based programming model like CUDA probably would never have emerged simply to support multicore x86 CPUs. It was designed with the structure required for efficient GPU programming and for programming heterogeneous systems with multiple memories. That said, it can be compiled for efficient execution on x86 using multiple cores and SSE/AVX to effect parallel execution. For that reason, it has value as a uniform parallel programming model across GPUs and multicore x86.

HPCwire: Is there any intelligence in the compiler to map some of the CUDA parallelism to the CPU and some to the GPU, based on available resources?

Wolfe: CUDA is a relatively low-level programming model. The program — meaning the programmer — explicitly allocates memory on the GPU or CPU device, copies data to and from the memory, and launches kernels on the device. It’s beyond the scope of a CUDA compiler to distribute the data across multiple memory spaces, manage the data motion between them, and decide what parts of the kernel domain to allocate to what devices.

HPCwire: You are demonstrating the technology at SC10. What’s the timeframe for the product launch?

Wolfe: The product will launch in three phases. The first phase, due in Q2 2011, will include CUDA functionality on the x86, allowing execution and debugging, but not optimized for high performance. The second phase, planned for Q4 2011, will use the SSE and/or AVX instructions and other performance optimizations. The third phase will include the Unified Binary technology, allowing a single executable to run on the GPU or the x86. The time frame for phase three is sometime in mid-2012.

HPCwire: What will it cost?

Wolfe: The current plan is to add CUDA C for multicore x86 as a new feature in our existing PGI Accelerator product line. Customers who already have PGI Accelerator licenses with active subscriptions will get PGI CUDA C at no extra cost as part of their standard release updates when it rolls out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep c Read more…

By Jorge Salazar, TACC

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often abused term: transparency. Another surprise: HPE apparently Read more…

By Doug Black and Tiffany Trader

BlueField SmartNIC Backs Transformation to Bare Metal Kubernetes

May 21, 2019

Hardware vendors are betting the transition to 5G wireless networks supporting myriad connected consumer and industrial devices also will accelerate the shift to heavy-duty bare-metal servers as a way to provision cloud- Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Smarter EDA: Leveraging New Technologies for Product Verification

There is perhaps no sector more competitive than the modern electronics industry. Macro-trends, including artificial intelligence, 5G, and the internet of things (IoT), continue to propel dramatic growth. Read more…

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This