Easy HPC in the Big Easy: An SC10 Interview with Bill Hilf

By Nicole Hemsoth

November 17, 2010

During SC10 in New Orleans this week, our editor spent an hour with Bill Hilf to discuss a wide range of topics, including Microsoft’s Azure cloud offering, both in terms of some recent newsworthy enhancements and the announcement of a certain other major public cloud that now boasts GPU capabilities. This led to discussions about performance, job scheduling requirements for hosting compute-intensive and HPC applications in a cloud environment and more general topics related to the company’s strategy  as the “other” public cloud continues to evolve, albeit via a different course. We’ll be bringing more details from this chat as the week goes on…

Microsoft’s Technical Computing Group, which focuses on HPC, parallel and cloud computing has been evolving as of late, a fact that is due in large part to input from its General Manager, Bill Hilf and his belief that the only way to broaden HPC access is to focus on making simplicity of access to high-performance computing applications and resources as easy as filling in rectangles in an Excel spreadsheet.

Ultimate abstraction of complexity might strike some of you as unrealistic. The thought that your applications can somehow be negotiated and abstracted to such a high level that they require little more than data entry does seem far-fetched but clearly, for Microsoft, the effort make this reality is not simply a priority so they can better engage that elusive missing middle of HPC users—it’s the key to their survival in the HPC space.

In Hilf’s view, technical computing users are going to form the backbone of Azure, hence the focus on HPC applications in any number of the company’s cloud-related announcements.

 This includes, for example, the news today that BLAST had been ported to their cloud and was being offered “free” (which is good since it’s really free to begin with) to users with Azure accounts. We’ll get to that item in a moment, but for now, back to how Bill Hilf wants to destroy HPC…or at least the weight of that acronym….in other words, by making it synonymous with computing in general.

“It goes far beyond building operating systems; it’s about building end user tools; it’s about making it all seamless like we did recently with BLAST. We ported it to Azure, which was good, but there was still a lot of this that was really difficult. Like, how do you go and distribute all of this across Azure? And what is Azure then exactly? And then how do you track progress when it’s thousands and thousands of cores and any of this could be anywhere since it’s a global OS. Really, your job could be running anywhere; in Shnghai or elsewhere—so how do you track it or get one answer back across thousands of machines?”

Easing into Old Models

As Bill Hilf noted, a couple of years ago it became clear that Microsoft’s efforts to become major parties in the HPC server space was not working as envisioned so a shift in ideology was necessary—that shift actually brought Microsoft right back to where it got its start in the first place so long ago—removing complexity and thereby taking vastly complicated programming and hiding it under a seamless veneer of usability.

That veneer has been so seamless that we can all too often forget completely what lies behind that Excel spreadsheet or, for that matter, the Word document that the first draft of this article was created on. Here’s the idea though, and it does go beyond removing complexity and adding the intuitive UI…By taking such steps to deliver complex applications to the masses via these smooth user interfaces and focusig on ease of use above all, what we consider to be a powerful applications (the “we” is loose and general here) no longer are perceived as powerful necessarily because they’ve become ubiquitous.

So more specifically, Hilf is saying, “we want to eventually make HPC, that acronym, meaningless” in the sense that users, even highly technical users, will no longer consider their applications in the context of high-performance or general purpose—or anything. It will all simply become computation. Plain and simple.

This can be a difficult idea to wrap the brain around, especially during a conference that is dedicated to that acronym but in some ways, the predominance of complexity—in fact, the celebration of it here in New Orleans this week—is actually exactly what Microsoft wants to be rid of. They want to open doors of access using that same tried and true model of delivering mainstream products, even high-end ones, to everyone who has enough computer savvy to click a few buttons. And you know, while some of it seems far off, there is something to be said for the old Microsoft simplification trick.

To give this some added context, our conversation actually began with a mild question about what he thought about their biggest public cloud competitor, Amazon Web Services, delivering its new Cluster GPU instance type—it didn’t start with the conversation about ease as central to Microsoft’s refreshed Technical Computing ambitions and strategy, but all of the above was necessary prefacing.

While I was leading up to a “yes, but when will you have a similar offering” at first, Hilf took another route and suggested that while the Amazon GPU announcement was “technically and academically interesting, on a theory level that is” it’s not much more than that since it’s essentially giving those relative few with the programming incentive and skill set. And this brings back his point yet again—what good is all the new cloud-delivered access to seemingly endless infrastructure if only some are able to use it?

This point is well taken. Most HPC users have depth of knowledge with one language but the researchers and users, on the other hand, want to focus on their research or development mission and minimize the time they need to take to become system admins if at all possible. With something like GPU computing capabilities being introduced in the public cloud, even if some of these potential users knew very well that they would be able to achieve significant performance increases via GPU acceleration, there is no layer of abstraction present to disguise the ugly CUDA barracuda behind it.

More generally speaking, Bill Hilf stated the following about GPUs in the cloud (or otherwise for that matter) and related this back to Microsoft’s “big picture” about how to make serious inroads back into HPC via the old “mainstreaming it” trick…

“If you look at the Top500, one of the most startling things is that most of them in the top ten are using GPUs; that general ideal of huge parallelism through 500 cores on one GPU versus four cores on CPU?—Well people are really starting to understand it and how to exploit it. So for this HPC group, they’re all asking, ‘how do we take advantage of the hardware and also, how do we make it easy?’

Having GPUs in a cloud is technically interesting but it doesn’t break any barriers because it’s still complex. Just offering them doesn’t make it more accessible; you still have to write a low-level CUDA program in a very specific hardware-oriented language for one specific GPU from one vendor. It’s all really technically complicated and therefore it’s still just a niche thing—it’s not like Visual basic or Word for instance where that complexity is abstracted—all of this is just technically interesting but it’s not easy and easy is the missing ingredient as we see it.”

“Mainstreaming” HPC Applications

Although the conversation didn’t hinge on GPUs specifically, that was a great frame for theme of the discussion, which all hinged on ease of use. Hilf held their porting of BLAST to Azure up to the light as an example of this pairing of “mainstreaming” HPC applications and providing greater ease as one in a coming series of announcements related to easy HPC.

What we are going to see from Microsoft in the next year is represented in their announcement about the BLAST case studies. Hilf says that this is the first of many coming examples that are set to show that the cloud can prove that which was otherwise thought to be impossible. The company worked with a major hospital that wanted to take advantage of BLAST by running what might be one of the most comprehensive BLAST-based searches to date. They wanted to search against the entire protein database—which is 10 million sequences, which then ends up being more than one hundred billion comparisons. This is a rather staggering project in terms of scope if yo’re reliant on NCBI and its strained resources, for example. Actually, it’s a staggering project no matter what you’re using.

Azure handled this request, however and Hilf claims that without any kind of special pricing, the cost was about $18,000 for this huge run that would have required millions in hardware and staffing investment. Oh, and with setup time included (one day) they ran the whole job in six days while keeping 4000 cores busy around the clock.

Hilf wants these case studies to show how Microsoft is recommitting to HPC; and thus carving out a slice of the arket for itself that might have seemed a little farther off not even a year ago.

Unleashing the Schedulers

Aside from a greater emphasis on ease of use and abstraction of complexity, we talked for quite some time about the role of providing automation and policies for governing how the cloud is used and what parameters users can work by. This is one area where Azure could have a leg up on Amazon.

One key to Microsoft’s success for HPC applications in the cloud (and there is no debate that it’s the embarrassingly parallel stuff we’re talking about here for the most part) hinges on its added ability to have some degree of automation to allow for scaling of resources for bursty needs.

The odd thing about this job scheduler for Azure is that it’s push-buttton, not fully automated to scale according to projected workloads or sudden spikes in need. Hilf seemed to be suggesting that while eventually greater automation would be a priority, for now during this proof of concept phase for a lot of technical computing users in their cloud, IT managers want full control over how the cloud experiment goes.

For instance, he used a traumatic tale from his personal life, noting that while in Asia recently, he used a number of features on his phone without realizing how the charges were mounting and arrived back in the states with a $700 bill. He sees how easily this can happen and knows that if a cloud experiment gets a little out of control and no one quite sees the full extent of how resources are being allocated and used, this could mean the death of the pending cloud test phase for that user—and probably the death of employment for the system admin who let this slip under his radar as well.

The topic of job schedulers in the cloud isn’t a sexy one but it is increasingly critical for users and for Microsoft, who again wants to add as many simplification features as possible, including the ability to see and manage resources.

We might take some of the interview segment about job schedulers to task in a more focused post as the din of SC dies down and we’ve had time to talk to one of the stars in the HPC scheduling show tomorrow, Platform Computing.

More to come from this lengthy interview later this week….
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This