Python Snakes Its Way Into HPC

By Nicole Hemsoth

November 17, 2010

Interpreted programming languages usually don’t find too many friends in high performance computing. Yet Python, one of the most popular general-purpose interpreted languages, has garnered a small community of enthusiastic followers. True believers got the opportunity to hear about the language in the HPC realm in a tutorial session on Monday and a BoF session on Wednesday. Argonne National Lab’s William Scullin, who participated in both events, talked with HPCwire about the status of Python in this space and what developers might look forward to.

HPCwire: Python is not a language normally associated with high performance or scientific computing. What does it have to offer this user community not being fulfilled by traditional languages, like C, Fortran or other high productivity, interpreted languages like MATLAB?

William Scullin: In a way, Python’s growing adoption in the high performance and scientific computing space is a homecoming. Guido Van Rossum originally began Python as a way of providing an administrative scripting language for the Amoeba distributed operating system. Then as now, it combines simple, easy to learn and maintain syntax with access to the same powerful libraries and function calls you would find in any C or Fortran implementation. While there has always been an emphasis on reducing the time it takes to perform a computation, Python has truly shined in improving scientific computing by taking the work out of programming and reducing the time to solution.

Often, projects fail when they try to be all things to all people. MATLAB, Mathematica, SPSS, and Maple are all very useful tools, in part because they are focused on meeting the needs of a well funded community with very specific goals. Python, arising from a very diverse community that ranges from astrophysicists to game programmers to web designers to entry level computer science students, has been very successful due to the diversity of users. The standard library has become amazingly extensive without becoming inconsistent.

Likewise, the amount of software that has come out of the community is amazing, most of which is open source, and the vast majority of which follows the same coding guidelines as the core modules. This makes it possible to easily develop an interface to an embedded microcontroller to turn off the desk lamp when your simulation finally ends and automatically push results to a web server in less than an hour — or alternately turn on a coffee pot and resubmit your job when the simulation fails — all in one language.

HPCwire: Obviously, performance is a driving issue in HPC. How is the issue of execution performance being addressed?

Scullin: Performance is a matter of perspective. A favorite maxim in the Python community is that the greatest performance improvement comes from going to the working from the non-working state. A second maxim, from Knuth, is that premature optimization is the root of all evil. While the execution speed of a Python application may not be as fast as one written in C, C++, or Fortran, its ease of use and low learning curve sharply improves overall time to solution. It’s a question of developer time versus compute time.

Side stepping the issue, it’s ridiculously easy to extend Python with modules written in C, C++, and Fortran. It’s common in our community to utilize compiled high performance numerical kernels, then use Python to handle areas like I/O, workflow management, computational analysis, and steering. When areas become performance bottlenecks, those areas tend to be rewritten in C.

Conversely, I’ve seen C and Fortran projects where code complexity has prevented maintenance and functionality, leading to thousands of lines of compiled code being replaced with less than a hundred lines of Python. In many ways, Python is coming to fulfill the roles that frameworks like Cactus and Samurai sought to fill at the start of the decade — letting scientists worry about their problems while letting the language and interpreter do the heavy lifting.

HPCwire: Do you think a compiled implementation of Python would be a step in the right direction?

Scullin: There will always be a place for the interpreted reference implementation, especially in development, but if a Python compiler comes along that provides better performance without compromising the language, I can’t see it finding much resistance.

That said, there are currently projects such as Unladen Swallow, PyPy, Stackless Python, Jython, and Iron Python that provide alternatives to the CPython interpreter. Unladen Swallow, backed in part by Google, and PyPy both seek to close the performance gap with compiled languages. Unladen Swallow is particularly exciting as it’s backended into the Low Level Virtual Machine, which is the basis for multiple compilers including Clang, currently the default compiler under Apple’s OS X. This makes a Python compiler more a matter of when than if.

HPCwire: Can you describe some of the more important Python initiatives — language extensions, libraries, tools, etc. — that are aimed at the HPC domain?

Scullin: I cannot speak highly enough of NumPy, which is almost the Swiss army knife of Python for scientific and high performance computing. It’s been under active development for years now with each release providing better performance, automatic integration of popular high performance libraries like BLAS and LAPACK, more features, and greater portability. NumPy is further extended by SciPy, which provides additional tools and lab kits addressing almost every science domain.

Likewise, I think very highly of mpi4py, PyMPI, PyCUDA and its sister PyOpenCL, petsc4py, and PyTrilinos. All of these keep improving the options we have to accelerate our code using the very same tools and interfaces that are available through traditional compiled languages with none of the complexity.

HPCwire: Are there vendors out there with commercially-supported solutions?

Scullin: Indeed, and more importantly, most of them are active contributors to and supporters of the Python community. I can no longer count the number of consulting firms that provide Python solutions. It’s also been very encouraging seeing vendors add Python support to their products. Two companies well known in the HPC space, Rogue Wave and ParaTools, have both been very responsive.

Rogue Wave has provided access to their mathematical libraries, IMSL via PyIMSL. Furthermore, they have brought a number of people into the Python community via PyIMSL Studio which they market officially as a prototyping tool. I’ve encountered PyIMSL studio users so happy with their prototype Python applications with PyIMSL Studio, that they ran with the Python code as production code. I should also mention that while the TotalView debugger is not officially a Python tool, it’s seen a lot of use by Python HPC users and it will be interesting to see where it goes since Rogue Wave’s acquisition of Acumen.

ParaTools, a major contributor to the TAU Performance System and a leading consultant in the area of parallel and high performance codes has done a very good job of adding Python support to TAU.

Without hesitation, I have used their tools with C, Fortran, and Python and found their support to be helpful and responsive regardless of language.

While not directly in the HPC market, Enthought, deserves special mention. They host an array of Python projects with engineering and science applications. They provide a commercial packaging of the Python interpreter with commonly used libraries and utilities along with technical support as the Enthought Python Distribution. Most of all, they are active developers of NumPy and SciPy. Without their support and involvement, I am not sure that NumPy would have come together as nicely as it has.

While relatively new, I’ll also be interested to see what the future holds for MBA Sciences’s SPM.Python toolkit for bringing parallelism into serial Python programs. I’ll be keeping a close watch on PiCloud, a firm which provides an amazingly easy to user cloud computing platform that makes running Python codes on a compute cloud ridiculously easy. PiCloud users have their computations offloaded without any serious code changes, having to be involved in any aspect of setting up a cloud infrastructure, or doing any server management. They’ve seriously made it as simple as coding and running.

Finally, though it hasn’t been making a lot of noise lately, NVIDIA has been putting effort behind Copperhead, which while not a complete Python, allows for the rapid development of CUDA kernels in Python-like code.

HPCwire: Do you think most uses of Python in HPC will eventually involve either integration with C or Fortran or source code translation to those languages?

Scullin: I believe that HPC users will continue to choose the best possible tool to address a need in a given situation. Python is flexible enough that there will be continued integration with C, Fortran, and other languages. At the same time, interpreter performance is being rapidly addressed, which makes the issues that come with language translation into C and Fortran cause that sort of project to be less attractive to active Python developers. What will be interesting to watch is how codes written in a mix of C, C++, Fortran, Python and other languages perform and evolve as the LLVM platform continues to mature.

HPCwire: Can you point to any successful case studies or projects where Python has been employed in this arena?

Scullin: At Argonne, we are involved in the development of GPAW, a density-functional theory Python code based on the projector-augmented wave method. Originating out of an international collaboration, it is mostly a mix of C and Python with the vast majority of the code being Python. It has been run at scale successfully and routinely on our Blue Gene platform. While the porting of any application to platforms like the Cray XT series or the Blue Gene is an interesting exercise in computer science, it’s far more remarkable that the performance has been on par from what I’ve seen in C or C++ codes. Moreover, it is being used to produce reliable data used to generate publications.

The other community that a lot of people think of when looking for successful Python applications in the HPC space is bioinformatics. While I’ve not been involved with many bioinformatics codes, the last four or five years have seen a rising number of chemists and biologists appearing on Python-related mailing lists and at conferences discussing how they have been using Python to power their science. While Perl still holds sway in the field, Python is quickly becoming almost as popular.

HPCwire: For those HPC developers interested in learning more about what’s available in the Python ecosystem, can you point to some resources they could tap into?

Scullin: Depending on their particular interests, one of the best places to start is by visiting www.scipy.org. From there, you can find links to numerous mailing lists, information about conferences, code recipes, documentation, and much more. In the Chicago and Bay Areas there are very active Python users groups with sizable memberships with an interest in HPC and scientific computing. Finally, given Python’s ease of use, one of the best things you can do is to spend an afternoon with the interpreter, simply playing with code and seeing what the language can do for you without any effort. The joy of doing powerful things with simple code is one of the most admirable traits of the language.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This