Python Snakes Its Way Into HPC

By Nicole Hemsoth

November 17, 2010

Interpreted programming languages usually don’t find too many friends in high performance computing. Yet Python, one of the most popular general-purpose interpreted languages, has garnered a small community of enthusiastic followers. True believers got the opportunity to hear about the language in the HPC realm in a tutorial session on Monday and a BoF session on Wednesday. Argonne National Lab’s William Scullin, who participated in both events, talked with HPCwire about the status of Python in this space and what developers might look forward to.

HPCwire: Python is not a language normally associated with high performance or scientific computing. What does it have to offer this user community not being fulfilled by traditional languages, like C, Fortran or other high productivity, interpreted languages like MATLAB?

William Scullin: In a way, Python’s growing adoption in the high performance and scientific computing space is a homecoming. Guido Van Rossum originally began Python as a way of providing an administrative scripting language for the Amoeba distributed operating system. Then as now, it combines simple, easy to learn and maintain syntax with access to the same powerful libraries and function calls you would find in any C or Fortran implementation. While there has always been an emphasis on reducing the time it takes to perform a computation, Python has truly shined in improving scientific computing by taking the work out of programming and reducing the time to solution.

Often, projects fail when they try to be all things to all people. MATLAB, Mathematica, SPSS, and Maple are all very useful tools, in part because they are focused on meeting the needs of a well funded community with very specific goals. Python, arising from a very diverse community that ranges from astrophysicists to game programmers to web designers to entry level computer science students, has been very successful due to the diversity of users. The standard library has become amazingly extensive without becoming inconsistent.

Likewise, the amount of software that has come out of the community is amazing, most of which is open source, and the vast majority of which follows the same coding guidelines as the core modules. This makes it possible to easily develop an interface to an embedded microcontroller to turn off the desk lamp when your simulation finally ends and automatically push results to a web server in less than an hour — or alternately turn on a coffee pot and resubmit your job when the simulation fails — all in one language.

HPCwire: Obviously, performance is a driving issue in HPC. How is the issue of execution performance being addressed?

Scullin: Performance is a matter of perspective. A favorite maxim in the Python community is that the greatest performance improvement comes from going to the working from the non-working state. A second maxim, from Knuth, is that premature optimization is the root of all evil. While the execution speed of a Python application may not be as fast as one written in C, C++, or Fortran, its ease of use and low learning curve sharply improves overall time to solution. It’s a question of developer time versus compute time.

Side stepping the issue, it’s ridiculously easy to extend Python with modules written in C, C++, and Fortran. It’s common in our community to utilize compiled high performance numerical kernels, then use Python to handle areas like I/O, workflow management, computational analysis, and steering. When areas become performance bottlenecks, those areas tend to be rewritten in C.

Conversely, I’ve seen C and Fortran projects where code complexity has prevented maintenance and functionality, leading to thousands of lines of compiled code being replaced with less than a hundred lines of Python. In many ways, Python is coming to fulfill the roles that frameworks like Cactus and Samurai sought to fill at the start of the decade — letting scientists worry about their problems while letting the language and interpreter do the heavy lifting.

HPCwire: Do you think a compiled implementation of Python would be a step in the right direction?

Scullin: There will always be a place for the interpreted reference implementation, especially in development, but if a Python compiler comes along that provides better performance without compromising the language, I can’t see it finding much resistance.

That said, there are currently projects such as Unladen Swallow, PyPy, Stackless Python, Jython, and Iron Python that provide alternatives to the CPython interpreter. Unladen Swallow, backed in part by Google, and PyPy both seek to close the performance gap with compiled languages. Unladen Swallow is particularly exciting as it’s backended into the Low Level Virtual Machine, which is the basis for multiple compilers including Clang, currently the default compiler under Apple’s OS X. This makes a Python compiler more a matter of when than if.

HPCwire: Can you describe some of the more important Python initiatives — language extensions, libraries, tools, etc. — that are aimed at the HPC domain?

Scullin: I cannot speak highly enough of NumPy, which is almost the Swiss army knife of Python for scientific and high performance computing. It’s been under active development for years now with each release providing better performance, automatic integration of popular high performance libraries like BLAS and LAPACK, more features, and greater portability. NumPy is further extended by SciPy, which provides additional tools and lab kits addressing almost every science domain.

Likewise, I think very highly of mpi4py, PyMPI, PyCUDA and its sister PyOpenCL, petsc4py, and PyTrilinos. All of these keep improving the options we have to accelerate our code using the very same tools and interfaces that are available through traditional compiled languages with none of the complexity.

HPCwire: Are there vendors out there with commercially-supported solutions?

Scullin: Indeed, and more importantly, most of them are active contributors to and supporters of the Python community. I can no longer count the number of consulting firms that provide Python solutions. It’s also been very encouraging seeing vendors add Python support to their products. Two companies well known in the HPC space, Rogue Wave and ParaTools, have both been very responsive.

Rogue Wave has provided access to their mathematical libraries, IMSL via PyIMSL. Furthermore, they have brought a number of people into the Python community via PyIMSL Studio which they market officially as a prototyping tool. I’ve encountered PyIMSL studio users so happy with their prototype Python applications with PyIMSL Studio, that they ran with the Python code as production code. I should also mention that while the TotalView debugger is not officially a Python tool, it’s seen a lot of use by Python HPC users and it will be interesting to see where it goes since Rogue Wave’s acquisition of Acumen.

ParaTools, a major contributor to the TAU Performance System and a leading consultant in the area of parallel and high performance codes has done a very good job of adding Python support to TAU.

Without hesitation, I have used their tools with C, Fortran, and Python and found their support to be helpful and responsive regardless of language.

While not directly in the HPC market, Enthought, deserves special mention. They host an array of Python projects with engineering and science applications. They provide a commercial packaging of the Python interpreter with commonly used libraries and utilities along with technical support as the Enthought Python Distribution. Most of all, they are active developers of NumPy and SciPy. Without their support and involvement, I am not sure that NumPy would have come together as nicely as it has.

While relatively new, I’ll also be interested to see what the future holds for MBA Sciences’s SPM.Python toolkit for bringing parallelism into serial Python programs. I’ll be keeping a close watch on PiCloud, a firm which provides an amazingly easy to user cloud computing platform that makes running Python codes on a compute cloud ridiculously easy. PiCloud users have their computations offloaded without any serious code changes, having to be involved in any aspect of setting up a cloud infrastructure, or doing any server management. They’ve seriously made it as simple as coding and running.

Finally, though it hasn’t been making a lot of noise lately, NVIDIA has been putting effort behind Copperhead, which while not a complete Python, allows for the rapid development of CUDA kernels in Python-like code.

HPCwire: Do you think most uses of Python in HPC will eventually involve either integration with C or Fortran or source code translation to those languages?

Scullin: I believe that HPC users will continue to choose the best possible tool to address a need in a given situation. Python is flexible enough that there will be continued integration with C, Fortran, and other languages. At the same time, interpreter performance is being rapidly addressed, which makes the issues that come with language translation into C and Fortran cause that sort of project to be less attractive to active Python developers. What will be interesting to watch is how codes written in a mix of C, C++, Fortran, Python and other languages perform and evolve as the LLVM platform continues to mature.

HPCwire: Can you point to any successful case studies or projects where Python has been employed in this arena?

Scullin: At Argonne, we are involved in the development of GPAW, a density-functional theory Python code based on the projector-augmented wave method. Originating out of an international collaboration, it is mostly a mix of C and Python with the vast majority of the code being Python. It has been run at scale successfully and routinely on our Blue Gene platform. While the porting of any application to platforms like the Cray XT series or the Blue Gene is an interesting exercise in computer science, it’s far more remarkable that the performance has been on par from what I’ve seen in C or C++ codes. Moreover, it is being used to produce reliable data used to generate publications.

The other community that a lot of people think of when looking for successful Python applications in the HPC space is bioinformatics. While I’ve not been involved with many bioinformatics codes, the last four or five years have seen a rising number of chemists and biologists appearing on Python-related mailing lists and at conferences discussing how they have been using Python to power their science. While Perl still holds sway in the field, Python is quickly becoming almost as popular.

HPCwire: For those HPC developers interested in learning more about what’s available in the Python ecosystem, can you point to some resources they could tap into?

Scullin: Depending on their particular interests, one of the best places to start is by visiting www.scipy.org. From there, you can find links to numerous mailing lists, information about conferences, code recipes, documentation, and much more. In the Chicago and Bay Areas there are very active Python users groups with sizable memberships with an interest in HPC and scientific computing. Finally, given Python’s ease of use, one of the best things you can do is to spend an afternoon with the interpreter, simply playing with code and seeing what the language can do for you without any effort. The joy of doing powerful things with simple code is one of the most admirable traits of the language.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This