Is 10 Gigabit Ethernet Ready for HPC?

By Tim Dales

November 18, 2010

Despite the still-modest showing of 10 Gigabit Ethernet (10GbE) technology in high performance computing deployments, vendors at SC10 were showcasing a wide array of performance-laden Ethernet products. In addition to stalwart HPC network vendors like Arista, BLADE Network Technologies (now part of IBM), Myricom, Voltaire and Mellanox, plying their 10GbE wares in the exhibition hall, we also saw Cisco, Brocade, Fulcrum, Solarflare, and ADVA Optical Networking trying to woo the HPC faithful.

IT Brand Pulse Labs analyst Tim Dales takes a look at the prospects for 10GbE in high performance computing, the migration pattern from GbE to 10GbE, and some application areas that seem especially suitable for the technology.

There are two key elements in 10 Gigabit Ethernet that will help drive increased adoption in the high performance computing (HPC) market: throughput (Mbps) and low-latency. Until now the networking I/O provided for HPC has been dominated by 1 Gigabit Ethernet (GbE) and InfiniBand. According to the HPC Advisory Council, in 2009 the HPC market interconnect breakdown was 43 percent GbE, 40 percent InfiniBand and 17 percent other. However, this is all about to change as 10GbE, low-latency adapters emerge in the market and become proven in HPC applications.

1Gbit to 10Gbit Migration

An enormous number of legacy HPC systems use 1Gbit today to access storage (NFS) and for inter-processor communication (IPC) between nodes. Upgrades to 10Gbit in HPC implementations can net 10x throughput improvements with a small investment in adapters and switches. B simply upgrading the network I/O, a large compute job in an HPC cluster would take a fraction of the time to complete and system managers can get more work done in less time. The question for existing HPC systems managers is whether the investment in improved network I/O will yield the necessary return to justify the upgrade. Currently, the price delta between 1Gbit and 10Gbit sever adapters is 4x for 10x of throughput improvement, which results in a lower 10Gbit normalized price.

As new HPC projects are funded and launched in the private and public sectors, designers will take a hard look at 10Gbit due to its cross-market appeal and improved performance but need to be convinced that the second element, low-latency capability, is available.

10Gbit Low-Latency Ethernet Applications

The brightest spot in 10Gbit low-latency applications is financial services and a subset called High Frequency Trading (HFT). HFT is a multi-billion dollar business niche that relies on low-latency market feeds from stock exchanges, a cluster of high-powered processors to run proprietary algorithms on the data, and another low-latency TCP connection back to the market to execute split-second trades. The trading firm that gets their trades in first…wins! With millions of dollars riding on daily trades with lightning fast executions you can see how low-latency 10Gbit is a necessity for this business model.

For clarification, low-latency Ethernet is described by a ½ round trip time (RTT) and is the length of time it takes for a signal to be transmitted plus the length of time it takes for the acknowledgment of that signal to be received. That sum is divided by 2 for the average one-way point-to-point latency. For Ethernet this is measured in microseconds (usec.) To give you a reference point, current 1Gbit Ethernet has a typical latency of approximately 20 usec. In the HFT application mentioned, latency was 4-5 usec, a number that I believe will prove acceptable in many HPC applications.

Consider that 10Gbit low-latency (4-5 usec.) financial application we just spoke of and see how it can be applied on a broader sense to HPC applications that have different characteristics, but can still benefit from increased throughput and low latency. For example, a seismic data processor will acquire terabytes of seismic data from the earth, transfer the data to a multi-node cluster and process the data. With 10Gbit low-latency Ethernet in the cluster, the IPC latency between compute nodes in the cluster is reduced which reduces the compute-time for seismic data processing jobs, that could be on the order of hours or even days of time savings. In addition, the 10x throughput improvement results in lower data transfer time from storage to compute cluster. The result is that seismic data reports are delivered quicker, customers are happier, and revenue comes sooner.

The same low-latency and high throughput features apply to other HPC applications, such as plasma physics simulations, life science modeling, and other clustered applications where huge reductions in compute run-times can be realized just by changing the network I/O.

It is well known in the HPC community that low-latency, high-bandwidth systems are critical to success. 1Gbit Ethernet has the mass-market appeal, and comprises a majority of HPC systems, but is not yet seen as a performance leader. I believe the new capabilities offered with 10Gbit: 10x higher data rate, and 5x lower latency will make it successful for HPC systems.

Buyer Beware! Not all 10Gbit server adapters provide very low-latency. Make sure you ask the vendor for the latency specs and any benchmarks they have performed to substantiate their low-latency claims.

About the Author

Tim Dales has over 25 years experience in product management and technical sales of hardware, software and services at BakBone Software, Incentra Solutions, MTI, Emulex, MAI Systems and AT&T. Tim runs IT Brand Pulse Labs which specializes in providing independent, third party testing and lab reports about Unified Networking products.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This