Conference Highlights Dividing Lines Across GPGPUs

By Michael Feldman

November 19, 2010

If there was a dominating theme at the Supercomputing Conference this year, it had to be GPU computing. From the influx of GPU-accelerated systems on the TOP500, including the number one system in the world to the inclusion of GPGPUs into nearly every discussion of exascale machines to the visibility of GPUs across the exhibition hall, the technology seemed to be ubiquitous at SC10.

Arguably, the biggest vendor announcement at the show was the launch of SGI’s Prism XL machine, and although that system is designed as a general-purpose platform for various kinds of HPC accelerators, it’s almost a given that the vast majority will be shipped with GPUs.

Today, every major and minor HPC system vendor now offers GPU-equipped servers, with plans by many to expand their portfolio over the next year. And that can only mean the customer demand for such technology is now palpable. In fact, if you aspire to be an HPC OEM or software provider and don’t have a GPU strategy, the next few years are going to be mighty lonely.

But not everyone at SC10 was hopping on the GPU bandwagon. (And I’m not just talking about the Convey folks.) There is a definite divide in the HPC application community about the value of graphics processors for science codes. I spoke with a number of developers who had played with GPUs and found they couldn’t realize that magical 10X performance bump they felt they needed to commit their applications to a new platform. Although there are plenty of technical computing applications that have been ported to CUDA, many — the majority, in fact — have not.

CAPS enterprise, makers of GPU-friendly compiler tools, offers a support service for porting codes to GPUs and found that 10X speedups should be considered quite good for an HPC application. According the them, getting to 100X or beyond would be attainable only by those algorithms that are not memory-bound, that is, those dominated by computation rather than memory access. Most of the customer applications they’ve worked with have been able to achieve between 2X and 10X performance increases when ported to GPUs, and sometimes that’s not enough for to justify a platform change. In some cases, reworking of the CPU component, alone, achieved a significant speedup. Only about half of the CAPS customers that were considering ports have made the jump to GPGPUs.

In talking with people here at SC10 and at NVIDIA’s GPU Technology Conference in September, my impression is that the bigger, older codes are more resistance to being ported to GPUs than smaller and newer ones. And it makes perfect sense. In many cases, those older codes are no longer attached to their original developers, which makes transforming the algorithms into a GPU-friendly design (or any design) that much harder. Also, legacy codes tend to have accumulated kludges and tweaks that make such redesigns extremely painful. This feeds into the human aspect of software engineering, where the if-it-aint-broke-don’t-fix-it crowd often dominates the software maintenance mentality.

This might help to explain the slow response of the US and Europe to adopt GPU-equipped supercomputers, at least at the level of the large national labs and universities. After all, this is where many of those legacy HPC codes are developed and maintained. That said, I suspect there are actually more GPU-accelerated clusters in the US and Europe than anywhere else; it’s the petascale systems that have not been forthcoming. At this point, the West is at least a year behind China and Japan in the GPGPU supercomputer arms race.

GPU computing skeptics can also point to evidence that there are better architectures for supercomputing already out there, or soon to be launched. For example, despite the enviable performance per watt of the graphics processor, the number one system on the just-announced Green500 list is a Blue Gene/Q prototype system. Of course, that’s cheating a bit, given that production Blue Gene/Q systems don’t yet exist. But the prototype Q did manage to beat the state-of-the-art TSUBAME 2.0 GPU supercomputer rather handily — 1684 megaflops/watt to 984 megaflops/watt. I suspect the “green” matchup will be much closer in 2011, when NVIDIA’s next-generation “Kepler” hardware and Blue Gene/Q are both in the field.

Also, the top system on the new Graph 500 list was the IBM Blue Gene/P system at Argonne National Lab. The Graph 500 attempts to measure the suitability of platforms for data analytics-type workloads, which is not the strong suit of the graphics processor, at least in its current incarnation. Graph problems require an architecture that can do a lot of random data accesses across memory at a very high rate. Few conventional computing architectures — CPU, GPU or otherwise — are any good at this.

Committed GPU computing dissenters are likely pinning their hopes on Intel’s Many Integrated Core (MIC) architecture, which is designed to address the same problem space as GPGPUs, but does so with a conventional x86 architecture. For the risk-averse, there is certainly an allure to recompiling your legacy source code with a future Intel compiler that will automagically spit out MIC code. But waiting until 2012 to see if that chip and compiler deliver as advertised could be the riskiest bet of all. Of course, we’ll have to wait until SC12 to see how this story turns out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This