Conference Highlights Dividing Lines Across GPGPUs

By Michael Feldman

November 19, 2010

If there was a dominating theme at the Supercomputing Conference this year, it had to be GPU computing. From the influx of GPU-accelerated systems on the TOP500, including the number one system in the world to the inclusion of GPGPUs into nearly every discussion of exascale machines to the visibility of GPUs across the exhibition hall, the technology seemed to be ubiquitous at SC10.

Arguably, the biggest vendor announcement at the show was the launch of SGI’s Prism XL machine, and although that system is designed as a general-purpose platform for various kinds of HPC accelerators, it’s almost a given that the vast majority will be shipped with GPUs.

Today, every major and minor HPC system vendor now offers GPU-equipped servers, with plans by many to expand their portfolio over the next year. And that can only mean the customer demand for such technology is now palpable. In fact, if you aspire to be an HPC OEM or software provider and don’t have a GPU strategy, the next few years are going to be mighty lonely.

But not everyone at SC10 was hopping on the GPU bandwagon. (And I’m not just talking about the Convey folks.) There is a definite divide in the HPC application community about the value of graphics processors for science codes. I spoke with a number of developers who had played with GPUs and found they couldn’t realize that magical 10X performance bump they felt they needed to commit their applications to a new platform. Although there are plenty of technical computing applications that have been ported to CUDA, many — the majority, in fact — have not.

CAPS enterprise, makers of GPU-friendly compiler tools, offers a support service for porting codes to GPUs and found that 10X speedups should be considered quite good for an HPC application. According the them, getting to 100X or beyond would be attainable only by those algorithms that are not memory-bound, that is, those dominated by computation rather than memory access. Most of the customer applications they’ve worked with have been able to achieve between 2X and 10X performance increases when ported to GPUs, and sometimes that’s not enough for to justify a platform change. In some cases, reworking of the CPU component, alone, achieved a significant speedup. Only about half of the CAPS customers that were considering ports have made the jump to GPGPUs.

In talking with people here at SC10 and at NVIDIA’s GPU Technology Conference in September, my impression is that the bigger, older codes are more resistance to being ported to GPUs than smaller and newer ones. And it makes perfect sense. In many cases, those older codes are no longer attached to their original developers, which makes transforming the algorithms into a GPU-friendly design (or any design) that much harder. Also, legacy codes tend to have accumulated kludges and tweaks that make such redesigns extremely painful. This feeds into the human aspect of software engineering, where the if-it-aint-broke-don’t-fix-it crowd often dominates the software maintenance mentality.

This might help to explain the slow response of the US and Europe to adopt GPU-equipped supercomputers, at least at the level of the large national labs and universities. After all, this is where many of those legacy HPC codes are developed and maintained. That said, I suspect there are actually more GPU-accelerated clusters in the US and Europe than anywhere else; it’s the petascale systems that have not been forthcoming. At this point, the West is at least a year behind China and Japan in the GPGPU supercomputer arms race.

GPU computing skeptics can also point to evidence that there are better architectures for supercomputing already out there, or soon to be launched. For example, despite the enviable performance per watt of the graphics processor, the number one system on the just-announced Green500 list is a Blue Gene/Q prototype system. Of course, that’s cheating a bit, given that production Blue Gene/Q systems don’t yet exist. But the prototype Q did manage to beat the state-of-the-art TSUBAME 2.0 GPU supercomputer rather handily — 1684 megaflops/watt to 984 megaflops/watt. I suspect the “green” matchup will be much closer in 2011, when NVIDIA’s next-generation “Kepler” hardware and Blue Gene/Q are both in the field.

Also, the top system on the new Graph 500 list was the IBM Blue Gene/P system at Argonne National Lab. The Graph 500 attempts to measure the suitability of platforms for data analytics-type workloads, which is not the strong suit of the graphics processor, at least in its current incarnation. Graph problems require an architecture that can do a lot of random data accesses across memory at a very high rate. Few conventional computing architectures — CPU, GPU or otherwise — are any good at this.

Committed GPU computing dissenters are likely pinning their hopes on Intel’s Many Integrated Core (MIC) architecture, which is designed to address the same problem space as GPGPUs, but does so with a conventional x86 architecture. For the risk-averse, there is certainly an allure to recompiling your legacy source code with a future Intel compiler that will automagically spit out MIC code. But waiting until 2012 to see if that chip and compiler deliver as advertised could be the riskiest bet of all. Of course, we’ll have to wait until SC12 to see how this story turns out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI report. The global study, conducted by S&P Global Market In Read more…

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

GenAI: It’s Not the GPUs, It’s the Storage

September 12, 2024

A recent news release from Data storage company WEKA and S&P Global Market Intelligence unveiled the findings of their second annual Global Trends in AI rep Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire