Conference Highlights Dividing Lines Across GPGPUs

By Michael Feldman

November 19, 2010

If there was a dominating theme at the Supercomputing Conference this year, it had to be GPU computing. From the influx of GPU-accelerated systems on the TOP500, including the number one system in the world to the inclusion of GPGPUs into nearly every discussion of exascale machines to the visibility of GPUs across the exhibition hall, the technology seemed to be ubiquitous at SC10.

Arguably, the biggest vendor announcement at the show was the launch of SGI’s Prism XL machine, and although that system is designed as a general-purpose platform for various kinds of HPC accelerators, it’s almost a given that the vast majority will be shipped with GPUs.

Today, every major and minor HPC system vendor now offers GPU-equipped servers, with plans by many to expand their portfolio over the next year. And that can only mean the customer demand for such technology is now palpable. In fact, if you aspire to be an HPC OEM or software provider and don’t have a GPU strategy, the next few years are going to be mighty lonely.

But not everyone at SC10 was hopping on the GPU bandwagon. (And I’m not just talking about the Convey folks.) There is a definite divide in the HPC application community about the value of graphics processors for science codes. I spoke with a number of developers who had played with GPUs and found they couldn’t realize that magical 10X performance bump they felt they needed to commit their applications to a new platform. Although there are plenty of technical computing applications that have been ported to CUDA, many — the majority, in fact — have not.

CAPS enterprise, makers of GPU-friendly compiler tools, offers a support service for porting codes to GPUs and found that 10X speedups should be considered quite good for an HPC application. According the them, getting to 100X or beyond would be attainable only by those algorithms that are not memory-bound, that is, those dominated by computation rather than memory access. Most of the customer applications they’ve worked with have been able to achieve between 2X and 10X performance increases when ported to GPUs, and sometimes that’s not enough for to justify a platform change. In some cases, reworking of the CPU component, alone, achieved a significant speedup. Only about half of the CAPS customers that were considering ports have made the jump to GPGPUs.

In talking with people here at SC10 and at NVIDIA’s GPU Technology Conference in September, my impression is that the bigger, older codes are more resistance to being ported to GPUs than smaller and newer ones. And it makes perfect sense. In many cases, those older codes are no longer attached to their original developers, which makes transforming the algorithms into a GPU-friendly design (or any design) that much harder. Also, legacy codes tend to have accumulated kludges and tweaks that make such redesigns extremely painful. This feeds into the human aspect of software engineering, where the if-it-aint-broke-don’t-fix-it crowd often dominates the software maintenance mentality.

This might help to explain the slow response of the US and Europe to adopt GPU-equipped supercomputers, at least at the level of the large national labs and universities. After all, this is where many of those legacy HPC codes are developed and maintained. That said, I suspect there are actually more GPU-accelerated clusters in the US and Europe than anywhere else; it’s the petascale systems that have not been forthcoming. At this point, the West is at least a year behind China and Japan in the GPGPU supercomputer arms race.

GPU computing skeptics can also point to evidence that there are better architectures for supercomputing already out there, or soon to be launched. For example, despite the enviable performance per watt of the graphics processor, the number one system on the just-announced Green500 list is a Blue Gene/Q prototype system. Of course, that’s cheating a bit, given that production Blue Gene/Q systems don’t yet exist. But the prototype Q did manage to beat the state-of-the-art TSUBAME 2.0 GPU supercomputer rather handily — 1684 megaflops/watt to 984 megaflops/watt. I suspect the “green” matchup will be much closer in 2011, when NVIDIA’s next-generation “Kepler” hardware and Blue Gene/Q are both in the field.

Also, the top system on the new Graph 500 list was the IBM Blue Gene/P system at Argonne National Lab. The Graph 500 attempts to measure the suitability of platforms for data analytics-type workloads, which is not the strong suit of the graphics processor, at least in its current incarnation. Graph problems require an architecture that can do a lot of random data accesses across memory at a very high rate. Few conventional computing architectures — CPU, GPU or otherwise — are any good at this.

Committed GPU computing dissenters are likely pinning their hopes on Intel’s Many Integrated Core (MIC) architecture, which is designed to address the same problem space as GPGPUs, but does so with a conventional x86 architecture. For the risk-averse, there is certainly an allure to recompiling your legacy source code with a future Intel compiler that will automagically spit out MIC code. But waiting until 2012 to see if that chip and compiler deliver as advertised could be the riskiest bet of all. Of course, we’ll have to wait until SC12 to see how this story turns out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This