Conference Highlights Dividing Lines Across GPGPUs

By Michael Feldman

November 19, 2010

If there was a dominating theme at the Supercomputing Conference this year, it had to be GPU computing. From the influx of GPU-accelerated systems on the TOP500, including the number one system in the world to the inclusion of GPGPUs into nearly every discussion of exascale machines to the visibility of GPUs across the exhibition hall, the technology seemed to be ubiquitous at SC10.

Arguably, the biggest vendor announcement at the show was the launch of SGI’s Prism XL machine, and although that system is designed as a general-purpose platform for various kinds of HPC accelerators, it’s almost a given that the vast majority will be shipped with GPUs.

Today, every major and minor HPC system vendor now offers GPU-equipped servers, with plans by many to expand their portfolio over the next year. And that can only mean the customer demand for such technology is now palpable. In fact, if you aspire to be an HPC OEM or software provider and don’t have a GPU strategy, the next few years are going to be mighty lonely.

But not everyone at SC10 was hopping on the GPU bandwagon. (And I’m not just talking about the Convey folks.) There is a definite divide in the HPC application community about the value of graphics processors for science codes. I spoke with a number of developers who had played with GPUs and found they couldn’t realize that magical 10X performance bump they felt they needed to commit their applications to a new platform. Although there are plenty of technical computing applications that have been ported to CUDA, many — the majority, in fact — have not.

CAPS enterprise, makers of GPU-friendly compiler tools, offers a support service for porting codes to GPUs and found that 10X speedups should be considered quite good for an HPC application. According the them, getting to 100X or beyond would be attainable only by those algorithms that are not memory-bound, that is, those dominated by computation rather than memory access. Most of the customer applications they’ve worked with have been able to achieve between 2X and 10X performance increases when ported to GPUs, and sometimes that’s not enough for to justify a platform change. In some cases, reworking of the CPU component, alone, achieved a significant speedup. Only about half of the CAPS customers that were considering ports have made the jump to GPGPUs.

In talking with people here at SC10 and at NVIDIA’s GPU Technology Conference in September, my impression is that the bigger, older codes are more resistance to being ported to GPUs than smaller and newer ones. And it makes perfect sense. In many cases, those older codes are no longer attached to their original developers, which makes transforming the algorithms into a GPU-friendly design (or any design) that much harder. Also, legacy codes tend to have accumulated kludges and tweaks that make such redesigns extremely painful. This feeds into the human aspect of software engineering, where the if-it-aint-broke-don’t-fix-it crowd often dominates the software maintenance mentality.

This might help to explain the slow response of the US and Europe to adopt GPU-equipped supercomputers, at least at the level of the large national labs and universities. After all, this is where many of those legacy HPC codes are developed and maintained. That said, I suspect there are actually more GPU-accelerated clusters in the US and Europe than anywhere else; it’s the petascale systems that have not been forthcoming. At this point, the West is at least a year behind China and Japan in the GPGPU supercomputer arms race.

GPU computing skeptics can also point to evidence that there are better architectures for supercomputing already out there, or soon to be launched. For example, despite the enviable performance per watt of the graphics processor, the number one system on the just-announced Green500 list is a Blue Gene/Q prototype system. Of course, that’s cheating a bit, given that production Blue Gene/Q systems don’t yet exist. But the prototype Q did manage to beat the state-of-the-art TSUBAME 2.0 GPU supercomputer rather handily — 1684 megaflops/watt to 984 megaflops/watt. I suspect the “green” matchup will be much closer in 2011, when NVIDIA’s next-generation “Kepler” hardware and Blue Gene/Q are both in the field.

Also, the top system on the new Graph 500 list was the IBM Blue Gene/P system at Argonne National Lab. The Graph 500 attempts to measure the suitability of platforms for data analytics-type workloads, which is not the strong suit of the graphics processor, at least in its current incarnation. Graph problems require an architecture that can do a lot of random data accesses across memory at a very high rate. Few conventional computing architectures — CPU, GPU or otherwise — are any good at this.

Committed GPU computing dissenters are likely pinning their hopes on Intel’s Many Integrated Core (MIC) architecture, which is designed to address the same problem space as GPGPUs, but does so with a conventional x86 architecture. For the risk-averse, there is certainly an allure to recompiling your legacy source code with a future Intel compiler that will automagically spit out MIC code. But waiting until 2012 to see if that chip and compiler deliver as advertised could be the riskiest bet of all. Of course, we’ll have to wait until SC12 to see how this story turns out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This