Swiss Researchers Propose ‘GreenIT’ Methodology for HPC

By Nicole Hemsoth

November 19, 2010

The latest Green500 list announced this week at SC10 is once again shining the spotlight on the energy efficiency of the world’s top supercomputers. But the path to more efficient high performance computing goes beyond this simple benchmark-based approach. Ralf Gruber and Vincent Keller, both from École Polytechnique Fédérale de Lausanne (EPFL), describe a holistic approach to more energy-efficient HPC operations in their book, [email protected] HPCwire contributor Steve Conway interviewed the Swiss duo about their ideas, including a new benchmark.

HPCwire: Why did you write a book on “green” high performance computing methods?

Ralf Gruber: There was no theory on how to couple application needs to hardware offers. In the book, we try to set up a theory by defining parameters to characterize resources and applications. This parameterization is then used to develop models to predict if a computer architecture is well suited for an application or not. These models can also be used to detect poor application implementations, to redesign computer architectures, to detect resources that should be switched off, to run on the same resource two or more complementary applications that optimally use the different parts, or to simply recognize the best-suited machine for a given application.

Vincent Keller: Finally, we used these models to interact with the DVS-able processors in order to tune the frequency of the processor. Measurements on a Nehalem already show overall energy reductions of up to 30 percent for main memory access-dominated applications.

HPCwire: You make recommendations in several areas. What are your application-oriented recommendations?

Gruber: Together with an efficient monitoring, the parameterization of the applications leads to models that are used to understand how well an application runs on different computers. The models — for instance the one on the complexity — also help to detect an unexpected behavior that can then be corrected.

Keller: We also make a recommendation to the vendors and the main HPC actors to create a new application-oriented REAL500 list, based on the observation that the current TOP500 list is largely used for marketing purposes and does not reflect the real applications anymore. At a certain point, it is counter-productive for making better usage of large-scale architectures.

HPCwire: How about your recommendations for system software?

Keller: System software should be able to easily measure the behavior of an application. Also, it should then be possible to act on the hardware parts during execution, such as switching off unused cores, reducing resource frequencies, or disabling unused main memory.

HPCwire: Sum up your recommendations for reducing energy use.

Keller: Energy reduction can be achieved through improving the efficiency of the application, through frequency reductions — four times more resources running at four times smaller frequency consume four times less energy — and by switching off unused parts, or by choosing a better-suited computer for the application to run on.

HPCwire: You mention that the TOP500 list and the derivative Green500 list are based on the narrow High Performance Linpack benchmark. What do you propose as an alternative to better measure energy efficiency?

Gruber: The parameterization and the models described in the book enable people to predict the behavior of an application on a different hardware platform, if one knows some timings of a few characteristic test applications. Thus, it would be perfect to perform measurements of processor, main memory, and network test cases for which the application-oriented parameters are exactly known.

Keller: Typical test cases are applications such as matrix*matrix-dominated, HPL-like codes, matrix*vector-dominated codes that are iteratively solved, Poisson problems described by sparse matrices, multicast communications dominated CP2K codes, and point-to-point-dominated, SpecuLOOS codes. Then, it would be possible to predict the behavior of your own application on the new hardware.

Keller: As a consequence, the new REAL500 classification would not be based on a single value, as is the case with today’s TOP500, but on several metrics, including pure CPU performance, the ratio of CPU performance to memory bandwidth, multicast communication performance, point-to-point communication performance, and network latency. At this point, knowing the applications ecosystem, it is possible to choose the right machine, or a set of the right machines to fit to the application component needs and achieve the greenest, most performant results.

HPCwire: Worldwide studies by IDC and Avetec showed that 69 percent of HPC datacenters do not actively measure energy efficiency today, and 80 percent have no strong mandate to improve energy efficiency. What will change this situation?

Keller: As a first comment, if 69 percent of the centers do not measure the energy, it is understandable that 80 percent of them have no mandate to improve energy efficiency. By providing them the right tools to show that it is possible to reduce the energy bill for hardware and cooling with no loss of computational performance, we are convinced that their financial departments will consider the question as important and act. The situation is already on a wind of change. It is not uncommon to see a datacenter that would like to extend its computing capacity but cannot because of a power supply limitation. The demand in computing power increases, but energy consumption should not.

HPCwire: John Gustafson of Intel Labs says that by 2018, we’ll have an exaflop computer and the memory bandwidth will consume half of the power. How important is it to create new strategies to minimize data movement?

Gruber: Main memory is already the big issue now. When we reduce the frequency of the processor during execution, for instance on a Nehalem, the main memory consumes most of the energy, and this happens not only in 2018. The major problem is the small parallelism in data access. We should highly increase access parallelism by increasing the number of memory banks as in the old vector machines, and by increasing the bit stream. Then, it will be possible to decrease the frequency and the energy consumption.

HPCwire: Is cloud computing more or less energy-efficient than in-house computing?

Keller: Cloud computing is a buzzword. It is little more than grid computing plus a business model, and the latest strategy of scientists to raise funding for academic research. Grid computing was a big dream and a big failure. Why? Because the question of “who pays?” was never taken into account.

Cloud computing is different in that sense. A provider gives a certain quality of service: “I will provide you 1 gigaflops with a memory bandwidth of 1 GB/second for $1/hour.” Thanks to virtualization, the cloud computing providers, such as Amazon, Salesforce or Google, can offer computing power to their customers at a lower price, with multiple customers on the same hardware. We’ve known since the mainframe era that shared resources are cheaper and more energy-efficient than distributed resources that are left idle part of the time. In that specific sense of re-implementing old concepts, cloud computing could be more energy-efficient than in-house computing.

Last but not least, the data transfer from the customer to the provider and back is not taken into account in the final bill. It is more or less like living in Geneva: Swiss people know that food is less expensive in France than in Switzerland, but they have to take into account the round trip. How much food would make it less expensive, with the transport costs included, to buy in France rather than in Switzerland?

HPCwire: What tips do you have for choosing a new supercomputer that will use energy wisely?

Keller: In a recent publication [1], we propose a GPU-based supercomputer that uses only a few cores, with the others switched off, and runs these at a four times lower frequency, This would reduce energy consumption by a factor of 16. To compensate for the performance reduction, four times more units must then be purchased. Together with the fact that the amount of main memory per processor can be reduced by a factor of four, the overall energy consumption can be estimated to drop by an overall factor of nine, and this by simply downgrading the resources.

Gruber: We also realized that the overall costs over four years could be cheaper for the downgraded hardware. In addition, decreasing the temperature by about 30° C increases the MTBF by a factor of 8. This is another important issue for exaflop machines. We were told that multiplying the number of functional units by four is unacceptable. We believe that running with one million of cores or with four million of cores is not an issue, but consuming nine times less energy, and increasing MTBF by eight are very important issues. The question we have to ask the hardware companies is clear: Will they agree to downgrade their computers to increase energy efficiency?

[1] Keller, V. and Gruber R. One Joule per GFlop for BLAS2 Now!, ICNAAM 2010 proceedings, pp. 1321-1324, ISBN: 978-0-7354-0834-0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This