Swiss Researchers Propose ‘GreenIT’ Methodology for HPC

By Nicole Hemsoth

November 19, 2010

The latest Green500 list announced this week at SC10 is once again shining the spotlight on the energy efficiency of the world’s top supercomputers. But the path to more efficient high performance computing goes beyond this simple benchmark-based approach. Ralf Gruber and Vincent Keller, both from École Polytechnique Fédérale de Lausanne (EPFL), describe a holistic approach to more energy-efficient HPC operations in their book, HPC@GreenIT. HPCwire contributor Steve Conway interviewed the Swiss duo about their ideas, including a new benchmark.

HPCwire: Why did you write a book on “green” high performance computing methods?

Ralf Gruber: There was no theory on how to couple application needs to hardware offers. In the book, we try to set up a theory by defining parameters to characterize resources and applications. This parameterization is then used to develop models to predict if a computer architecture is well suited for an application or not. These models can also be used to detect poor application implementations, to redesign computer architectures, to detect resources that should be switched off, to run on the same resource two or more complementary applications that optimally use the different parts, or to simply recognize the best-suited machine for a given application.

Vincent Keller: Finally, we used these models to interact with the DVS-able processors in order to tune the frequency of the processor. Measurements on a Nehalem already show overall energy reductions of up to 30 percent for main memory access-dominated applications.

HPCwire: You make recommendations in several areas. What are your application-oriented recommendations?

Gruber: Together with an efficient monitoring, the parameterization of the applications leads to models that are used to understand how well an application runs on different computers. The models — for instance the one on the complexity — also help to detect an unexpected behavior that can then be corrected.

Keller: We also make a recommendation to the vendors and the main HPC actors to create a new application-oriented REAL500 list, based on the observation that the current TOP500 list is largely used for marketing purposes and does not reflect the real applications anymore. At a certain point, it is counter-productive for making better usage of large-scale architectures.

HPCwire: How about your recommendations for system software?

Keller: System software should be able to easily measure the behavior of an application. Also, it should then be possible to act on the hardware parts during execution, such as switching off unused cores, reducing resource frequencies, or disabling unused main memory.

HPCwire: Sum up your recommendations for reducing energy use.

Keller: Energy reduction can be achieved through improving the efficiency of the application, through frequency reductions — four times more resources running at four times smaller frequency consume four times less energy — and by switching off unused parts, or by choosing a better-suited computer for the application to run on.

HPCwire: You mention that the TOP500 list and the derivative Green500 list are based on the narrow High Performance Linpack benchmark. What do you propose as an alternative to better measure energy efficiency?

Gruber: The parameterization and the models described in the book enable people to predict the behavior of an application on a different hardware platform, if one knows some timings of a few characteristic test applications. Thus, it would be perfect to perform measurements of processor, main memory, and network test cases for which the application-oriented parameters are exactly known.

Keller: Typical test cases are applications such as matrix*matrix-dominated, HPL-like codes, matrix*vector-dominated codes that are iteratively solved, Poisson problems described by sparse matrices, multicast communications dominated CP2K codes, and point-to-point-dominated, SpecuLOOS codes. Then, it would be possible to predict the behavior of your own application on the new hardware.

Keller: As a consequence, the new REAL500 classification would not be based on a single value, as is the case with today’s TOP500, but on several metrics, including pure CPU performance, the ratio of CPU performance to memory bandwidth, multicast communication performance, point-to-point communication performance, and network latency. At this point, knowing the applications ecosystem, it is possible to choose the right machine, or a set of the right machines to fit to the application component needs and achieve the greenest, most performant results.

HPCwire: Worldwide studies by IDC and Avetec showed that 69 percent of HPC datacenters do not actively measure energy efficiency today, and 80 percent have no strong mandate to improve energy efficiency. What will change this situation?

Keller: As a first comment, if 69 percent of the centers do not measure the energy, it is understandable that 80 percent of them have no mandate to improve energy efficiency. By providing them the right tools to show that it is possible to reduce the energy bill for hardware and cooling with no loss of computational performance, we are convinced that their financial departments will consider the question as important and act. The situation is already on a wind of change. It is not uncommon to see a datacenter that would like to extend its computing capacity but cannot because of a power supply limitation. The demand in computing power increases, but energy consumption should not.

HPCwire: John Gustafson of Intel Labs says that by 2018, we’ll have an exaflop computer and the memory bandwidth will consume half of the power. How important is it to create new strategies to minimize data movement?

Gruber: Main memory is already the big issue now. When we reduce the frequency of the processor during execution, for instance on a Nehalem, the main memory consumes most of the energy, and this happens not only in 2018. The major problem is the small parallelism in data access. We should highly increase access parallelism by increasing the number of memory banks as in the old vector machines, and by increasing the bit stream. Then, it will be possible to decrease the frequency and the energy consumption.

HPCwire: Is cloud computing more or less energy-efficient than in-house computing?

Keller: Cloud computing is a buzzword. It is little more than grid computing plus a business model, and the latest strategy of scientists to raise funding for academic research. Grid computing was a big dream and a big failure. Why? Because the question of “who pays?” was never taken into account.

Cloud computing is different in that sense. A provider gives a certain quality of service: “I will provide you 1 gigaflops with a memory bandwidth of 1 GB/second for $1/hour.” Thanks to virtualization, the cloud computing providers, such as Amazon, Salesforce or Google, can offer computing power to their customers at a lower price, with multiple customers on the same hardware. We’ve known since the mainframe era that shared resources are cheaper and more energy-efficient than distributed resources that are left idle part of the time. In that specific sense of re-implementing old concepts, cloud computing could be more energy-efficient than in-house computing.

Last but not least, the data transfer from the customer to the provider and back is not taken into account in the final bill. It is more or less like living in Geneva: Swiss people know that food is less expensive in France than in Switzerland, but they have to take into account the round trip. How much food would make it less expensive, with the transport costs included, to buy in France rather than in Switzerland?

HPCwire: What tips do you have for choosing a new supercomputer that will use energy wisely?

Keller: In a recent publication [1], we propose a GPU-based supercomputer that uses only a few cores, with the others switched off, and runs these at a four times lower frequency, This would reduce energy consumption by a factor of 16. To compensate for the performance reduction, four times more units must then be purchased. Together with the fact that the amount of main memory per processor can be reduced by a factor of four, the overall energy consumption can be estimated to drop by an overall factor of nine, and this by simply downgrading the resources.

Gruber: We also realized that the overall costs over four years could be cheaper for the downgraded hardware. In addition, decreasing the temperature by about 30° C increases the MTBF by a factor of 8. This is another important issue for exaflop machines. We were told that multiplying the number of functional units by four is unacceptable. We believe that running with one million of cores or with four million of cores is not an issue, but consuming nine times less energy, and increasing MTBF by eight are very important issues. The question we have to ask the hardware companies is clear: Will they agree to downgrade their computers to increase energy efficiency?

[1] Keller, V. and Gruber R. One Joule per GFlop for BLAS2 Now!, ICNAAM 2010 proceedings, pp. 1321-1324, ISBN: 978-0-7354-0834-0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This