Swiss Researchers Propose ‘GreenIT’ Methodology for HPC

By Nicole Hemsoth

November 19, 2010

The latest Green500 list announced this week at SC10 is once again shining the spotlight on the energy efficiency of the world’s top supercomputers. But the path to more efficient high performance computing goes beyond this simple benchmark-based approach. Ralf Gruber and Vincent Keller, both from École Polytechnique Fédérale de Lausanne (EPFL), describe a holistic approach to more energy-efficient HPC operations in their book, [email protected] HPCwire contributor Steve Conway interviewed the Swiss duo about their ideas, including a new benchmark.

HPCwire: Why did you write a book on “green” high performance computing methods?

Ralf Gruber: There was no theory on how to couple application needs to hardware offers. In the book, we try to set up a theory by defining parameters to characterize resources and applications. This parameterization is then used to develop models to predict if a computer architecture is well suited for an application or not. These models can also be used to detect poor application implementations, to redesign computer architectures, to detect resources that should be switched off, to run on the same resource two or more complementary applications that optimally use the different parts, or to simply recognize the best-suited machine for a given application.

Vincent Keller: Finally, we used these models to interact with the DVS-able processors in order to tune the frequency of the processor. Measurements on a Nehalem already show overall energy reductions of up to 30 percent for main memory access-dominated applications.

HPCwire: You make recommendations in several areas. What are your application-oriented recommendations?

Gruber: Together with an efficient monitoring, the parameterization of the applications leads to models that are used to understand how well an application runs on different computers. The models — for instance the one on the complexity — also help to detect an unexpected behavior that can then be corrected.

Keller: We also make a recommendation to the vendors and the main HPC actors to create a new application-oriented REAL500 list, based on the observation that the current TOP500 list is largely used for marketing purposes and does not reflect the real applications anymore. At a certain point, it is counter-productive for making better usage of large-scale architectures.

HPCwire: How about your recommendations for system software?

Keller: System software should be able to easily measure the behavior of an application. Also, it should then be possible to act on the hardware parts during execution, such as switching off unused cores, reducing resource frequencies, or disabling unused main memory.

HPCwire: Sum up your recommendations for reducing energy use.

Keller: Energy reduction can be achieved through improving the efficiency of the application, through frequency reductions — four times more resources running at four times smaller frequency consume four times less energy — and by switching off unused parts, or by choosing a better-suited computer for the application to run on.

HPCwire: You mention that the TOP500 list and the derivative Green500 list are based on the narrow High Performance Linpack benchmark. What do you propose as an alternative to better measure energy efficiency?

Gruber: The parameterization and the models described in the book enable people to predict the behavior of an application on a different hardware platform, if one knows some timings of a few characteristic test applications. Thus, it would be perfect to perform measurements of processor, main memory, and network test cases for which the application-oriented parameters are exactly known.

Keller: Typical test cases are applications such as matrix*matrix-dominated, HPL-like codes, matrix*vector-dominated codes that are iteratively solved, Poisson problems described by sparse matrices, multicast communications dominated CP2K codes, and point-to-point-dominated, SpecuLOOS codes. Then, it would be possible to predict the behavior of your own application on the new hardware.

Keller: As a consequence, the new REAL500 classification would not be based on a single value, as is the case with today’s TOP500, but on several metrics, including pure CPU performance, the ratio of CPU performance to memory bandwidth, multicast communication performance, point-to-point communication performance, and network latency. At this point, knowing the applications ecosystem, it is possible to choose the right machine, or a set of the right machines to fit to the application component needs and achieve the greenest, most performant results.

HPCwire: Worldwide studies by IDC and Avetec showed that 69 percent of HPC datacenters do not actively measure energy efficiency today, and 80 percent have no strong mandate to improve energy efficiency. What will change this situation?

Keller: As a first comment, if 69 percent of the centers do not measure the energy, it is understandable that 80 percent of them have no mandate to improve energy efficiency. By providing them the right tools to show that it is possible to reduce the energy bill for hardware and cooling with no loss of computational performance, we are convinced that their financial departments will consider the question as important and act. The situation is already on a wind of change. It is not uncommon to see a datacenter that would like to extend its computing capacity but cannot because of a power supply limitation. The demand in computing power increases, but energy consumption should not.

HPCwire: John Gustafson of Intel Labs says that by 2018, we’ll have an exaflop computer and the memory bandwidth will consume half of the power. How important is it to create new strategies to minimize data movement?

Gruber: Main memory is already the big issue now. When we reduce the frequency of the processor during execution, for instance on a Nehalem, the main memory consumes most of the energy, and this happens not only in 2018. The major problem is the small parallelism in data access. We should highly increase access parallelism by increasing the number of memory banks as in the old vector machines, and by increasing the bit stream. Then, it will be possible to decrease the frequency and the energy consumption.

HPCwire: Is cloud computing more or less energy-efficient than in-house computing?

Keller: Cloud computing is a buzzword. It is little more than grid computing plus a business model, and the latest strategy of scientists to raise funding for academic research. Grid computing was a big dream and a big failure. Why? Because the question of “who pays?” was never taken into account.

Cloud computing is different in that sense. A provider gives a certain quality of service: “I will provide you 1 gigaflops with a memory bandwidth of 1 GB/second for $1/hour.” Thanks to virtualization, the cloud computing providers, such as Amazon, Salesforce or Google, can offer computing power to their customers at a lower price, with multiple customers on the same hardware. We’ve known since the mainframe era that shared resources are cheaper and more energy-efficient than distributed resources that are left idle part of the time. In that specific sense of re-implementing old concepts, cloud computing could be more energy-efficient than in-house computing.

Last but not least, the data transfer from the customer to the provider and back is not taken into account in the final bill. It is more or less like living in Geneva: Swiss people know that food is less expensive in France than in Switzerland, but they have to take into account the round trip. How much food would make it less expensive, with the transport costs included, to buy in France rather than in Switzerland?

HPCwire: What tips do you have for choosing a new supercomputer that will use energy wisely?

Keller: In a recent publication [1], we propose a GPU-based supercomputer that uses only a few cores, with the others switched off, and runs these at a four times lower frequency, This would reduce energy consumption by a factor of 16. To compensate for the performance reduction, four times more units must then be purchased. Together with the fact that the amount of main memory per processor can be reduced by a factor of four, the overall energy consumption can be estimated to drop by an overall factor of nine, and this by simply downgrading the resources.

Gruber: We also realized that the overall costs over four years could be cheaper for the downgraded hardware. In addition, decreasing the temperature by about 30° C increases the MTBF by a factor of 8. This is another important issue for exaflop machines. We were told that multiplying the number of functional units by four is unacceptable. We believe that running with one million of cores or with four million of cores is not an issue, but consuming nine times less energy, and increasing MTBF by eight are very important issues. The question we have to ask the hardware companies is clear: Will they agree to downgrade their computers to increase energy efficiency?

[1] Keller, V. and Gruber R. One Joule per GFlop for BLAS2 Now!, ICNAAM 2010 proceedings, pp. 1321-1324, ISBN: 978-0-7354-0834-0

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This